
1

v1.2 1

Algorithms, Design and Analysis

Big-Oh analysis,
Brute Force, Divide and conquer

intro

v1.2 2

Types of formulas for basic operation count

• Exact formula
e.g., C(n) = n(n-1)/2

• Formula indicating order of growth with
specific multiplicative constant

e.g., C(n) ˜ 0.5 n2

• Formula indicating order of growth with
unknown multiplicative constant

e.g., C(n) ˜ cn2

v1.2 3

Order of growth

• Most important: Order of growth within a constant
multiple as n? 8

• Example:
– How much faster will algorithm run on computer that is

twice as fast?

– How much longer does it take to solve problem of
double input size?

• See table 2.1

v1.2 4

Table 2.1

v1.2 5

Asymptotic growth rate

• A way of comparing functions that ignores constant
factors and small input sizes

• O(g(n)): class of functions f(n) that grow no faster
than g(n)

• T (g(n)): class of functions f(n) that grow at same
rate as g(n)

• O(g(n)): class of functions f(n) that grow at least as
fast as g(n)

v1.2 6

Big-oh

2

v1.2 7

Big-omega

v1.2 8

Big-theta

v1.2 9

Establishing rate of growth: Method 1 – using
limits

limn? 8 T(n)/g(n)
=

0 order of growth of TT((n)n) < order of growth of gg((nn))

c>0 order of growth of TT((n)n) = order of growth of gg((nn))

8 order of growth of TT((n)n) > order of growth of gg((nn))

Examples:Examples:
• 10n vs. 2n2

• n(n+1)/2 vs. n2

• logb n vs. logc n

v1.2 10

L’Hôpital’s rule

If
• limn? 8 f(n) = limn? 8 g(n) = 8

• and the derivatives f´, g´ exist,

Then
ff((nn))
gg((nn))

limlim
nn? 8? 8

=
f f ´(´(nn))
g g ´(´(nn))

limlim
nn? 8? 8

•• Example: Example: loglognn vs. vs. nn

v1.2 11

Establishing rate of growth: Method 2 – using
definition

• f(n) is O(g(n)) if order of growth of f(n) =
order of growth of g(n) (within constant
multiple)

• There exist positive constant c and non-
negative integer n0 such that

f(n) = c g(n) for every n = n0

Examples:
• 10n is O(2n2)

• 5n+20 is O(10n)
v1.2 12

Basic Asymptotic Efficiency classes

factorialn!
exponential2n

cubicn3

quadraticn2

n log nn log n
linearn

logarithmiclog n
constant1

3

v1.2 13

More Big-Oh Examples

7n-2
7n-2 is O(n)
need c > 0 and n0 ≥ 1 such that 7n-2 ≤ c•n for n ≥ n0

this is true for c = 7 and n0 = 1

n 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)
need c > 0 and n0 ≥ 1 such that 3n3 + 20n2 + 5 ≤ c•n3 for n ≥ n0

this is true for c = 4 and n0 = 21

n 3 log n + log log n
3 log n + log log n is O(log n)
need c > 0 and n0 ≥ 1 such that 3 log n + log log n ≤ c•log n for n ≥ n0

this is true for c = 4 and n0 = 2
v1.2 14

Big-Oh Rules

• If is f(n) a polynomial of degree d, then f(n) is
O(nd), i.e.,

1. Drop lower-order terms

2. Drop constant factors

• Use the smallest possible class of functions
– Say “2n is O(n)” instead of “2n is O(n2)”

• Use the simplest expression of the class
– Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

v1.2 15

Intuition for Asymptotic
Notation

Big-Oh
– f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

big-Omega
– f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n)

big-Theta
– f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)

little-oh
– f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)

little-omega
– f(n) is ω(g(n)) if is asymptotically strictly greater than g(n)

v1.2 16

Brute Force

A straightforward approach usually based on
problem statement and definitions

Examples:
1. Computing an (a > 0, n a nonnegative

integer)

2. Computing n!

3. Selection sort

4. Sequential search

v1.2 17

More brute force algorithm examples:

• Closest pair
– Problem: find closest among n points in k-

dimensional space
– Algorithm: Compute distance between each pair of

points
– Efficiency :

• Convex hull
– Problem: find smallest convex polygon enclosing n

points on the plane
– Algorithm: For each pair of points p1 and p2

determine whether all other points lie to the same
side of the straight line through p1 and p2

– Efficiency : v1.2 18

Brute force strengths and weaknesses

• Strengths:
– wide applicability
– simplicity
– yields reasonable algorithms for some important problems

• searching
• string matching
• matrix multiplication

– yields standard algorithms for simple computational tasks
• sum/product of n numbers
• finding max/min in a list

• Weaknesses:
– rarely yields efficient algorithms
– some brute force algorithms unacceptably slow
– not as constructive/creative as some other design

techniques

4

v1.2 19

Divide and Conquer

The most well known algorithm design
strategy:

1. Divide instance of problem into two or
more smaller instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger)
instance by combining these solutions

v1.2 20

Divide-and-conquer technique

subproblem 2
of size n/2

subproblem 1
of size n/2

a solution to
subproblem 1

a solution to
the original problem

a solution to
subproblem 2

a problem of size n

v1.2 21

Divide and Conquer Examples

• Sorting: mergesort and quicksort

• Tree traversals

• Binary search

• Matrix multiplication-Strassen’s algorithm

• Convex hull-QuickHull algorithm

v1.2 22

General Divide and Conquer recurrence:

T(n) = aT(n/b) + f (n) where f (n) ? T(nk)

1. a < bk T(n) ? T(nk)
2. a = bk T(n) ? T(nk lg n)
3. a > bk T(n) ? T(nlog b a)

Note: the same results hold with O instead of
T.

v1.2 23

Mergesort

Algorithm:
• Split array A[1..n] in two and make copies of each

half
in arrays B[1.. n/2] and C[1.. n/2]

• Sort arrays B and C
• Merge sorted arrays B and C into array A as follows:

– Repeat the following until no elements remain in one of the
arrays:

• compare the first elements in the remaining unprocessed
portions of the arrays

• copy the smaller of the two into A, while incrementing the index
indicating the unprocessed portion of that array

– Once all elements in one of the arrays are processed, copy
the remaining unprocessed elements from the other array
into A.

v1.2 24

Mergesort Example

7 2 1 6 4

5

v1.2 25

Efficiency of mergesort

• All cases have same efficiency: T (n log n)

• Number of comparisons is close to theoretical
minimum for comparison-based sorting:
– log n ! ˜ n lg n - 1.44 n

• Space requirement: T (n) (NOT in-place)

• Can be implemented without recursion
(bottom-up)

v1.2 26

Quicksort

• Select a pivot (partitioning element)
• Rearrange the list so that all the elements in the

positions before the pivot are smaller than or equal to
the pivot and those after the pivot are larger than the
pivot (See algorithm Partition in section 4.2)

• Exchange the pivot with the last element in the first
(i.e., = sublist) – the pivot is now in its final position

• Sort the two sublists

p

A[i]=p A[i]>p

v1.2 27

The partition algorithm

v1.2 28

Quicksort Example

15 22 13 27 12 10 20 25

v1.2 29

Efficiency of quicksort

• Best case: split in the middle — T (n log n)
• Worst case: sorted array! — T (n2)
• Average case: random arrays — T (n log n)

• Improvements:
– better pivot selection: median of three partitioning avoids

worst case in sorted files
– switch to insertion sort on small subfiles
– elimination of recursion
these combine to 20-25% improvement

• Considered the method of choice for internal sorting
for large files (n = 10000)

v1.2 30

QuickHull Algorithm

Inspired by Quicksort compute Convex Hull:
• Assume points are sorted by x-coordinate values

• Identify extreme points P1 and P2 (part of hull)
• Compute upper hull:

– find point Pmax that is farthest away from line P1P2

– compute the hull of the points to the left of line P1Pmax

– compute the hull of the points to the left of line PmaxP2

• Compute lower hull in a similar manner

P 1

P 2

P max

6

v1.2 31

Efficiency of QuickHull algorithm

• Finding point farthest away from line P1P2 can be
done in linear time

• This gives same efficiency as quicksort :
– Worst case: T (n2)
– Average case: T (n log n)

• If points are not initially sorted by x-coordinate value,
this can be accomplished in T (n log n) — no
increase in asymptotic efficiency class

• Other algorithms for convex hull:
– Graham’s scan
– DCHull
also in T (n log n)

