Computing and Software Systems 343, Spring 2007
Algorithms

Dynamic Programming: practice problems, and solutions. Version 1.1.

Practice Problems:

1. Illustrate the performance of the line-breaking algorithm on this sentence with line width 16. As input, assume the entire paragraph consists of just the first sentence of this problem, starting from "Illustrate" and ending with "16.". Because we count spaces after the words, the first word has length 11, and the last word has length 4. Note that "line-breaking" should be considered one word of length 14. You should compute the optimal way of breaking into lines that gives the minimum penalty using the dynamic programming algorithm. At a minimum, you need to show the values of the array that holds the subproblem solutions

2. Consider the problem of determining how many distinct ways there are to give x cents in change using any coins from among pennies, nickels, dimes, quarters, and half-dollars. Here order does not matter, so that a penny, a dime, and a penny is the same as two pennies and a dime. As an example, there are six ways to give 17 cents change: a dime, a nickel, and two pennies; a dime and seven pennies; three nickels and two pennies; two nickels and seven pennies; one nickel and 12 pennies; and 17 pennies. Design a dynamic programming algorithm that solves this problem

a. Describe the subproblems you wish to solve for your dynamic programming solution.

b. Write your algorithm in pseudocode.

3. How can we modify the dynamic programming algorithm for the knapsack problem from simply computing the best value to computing the subset that gives the best value?

4. Let S={a,b,c,d,e,f,g} be a collection of objects with (value,weight) pairs as follows: a:(12,4), b:(10,6), c:(8,5), d:(11,7), e:(14,3), f:(7,1), g: (9,6). What is an optimal solution for the knapsack problem on S, assuming we have a sack that can hold objects with total weight 18? Show your work.

5. In this problem, we will study the change making problem. In this problem, you are given n coin denominations in cents:
cn > cn-1 > … > c1, and an amount x in change, and you want to return the number of coins needed to make x in change. For the dynamic programming solution, you should return an optimal solution representing the fewest number of coins possible that will make x cents in change. You may assume that c1 = 1, so that it is always possible to make amount x in change. Your algorithm should output the number of coins required

a. Describe the subproblems you wish to solve for your dynamic programming solution.

b. Implement a dynamic programming solution in Java; it should print out the fewest number of coins necessary for making change.

c. Analyze the worst-case running-time and space requirements for your solution, in terms of n and x.

6. The line-breaking problem revisited: This is the line breaking problem: Given array w of word lengths, w[0], w[1], … w[n-1]; n total words; and line width limit L. Return minimum total penalty, where penalty is sum of each line penalty, and each line penalty is the number of extra spaces cubed, except for the last line that has penalty 0. The dynamic programming solution in the slides uses lineB[k] to store the minimum penalty when placing words w[k], w[k+1], .. w[n-1] onto lines. Write a recursive programming solution to the linebreaking problem, that does not use dynamic programming, but does follow the subproblem definition in the dynamic programming version on the slides.

Warning! SOLUTIONS follow. Please attempt the problems above before looking at the solution.

1) Line breaking, word lengths are: 11 4 12 3 4 14 10 3 5 9 5 5 6 4

Use array B[] of size 14, where B[i] stores the minimum penalty from placing all words from the ith word (wi) to the last word (w14) into lines. [Start the array at index 1].

We are using a line width of 16.

Since the last 3 words all fit onto one line, and the last line has no penalty,

B[12], B[13], and B[14] should all be zero.

For B[11], placing w11 through w13 on a line with penalty 0 and paying 0 for the reset of the lines is clearly the best possible (for total penalty 0).

For B[10], w10 and w11 on one line is the best, with line penalty 23, and total penalty 23+B[12]

B[9]: w9 and w10 on one line is best, with line penalty 23, and total penalty 23+B[11]

B[8]: w8 and w9 on one line (total penalty 83 + B[10]) is better than only w8 (total penalty 133+B[9]).

B[7]: w7 and w8 on one line is best, total penalty 33+B[9]

B[6]: Only one possible solution: w6 on a line by itself. Total penalty 23+ B[7].

B[5]: Also only one solution of w5 on a line by itself. Total penalty 123+ B[6].

B[4]: w4 and w5 on one line is best, total penalty 93+B[6].

B[3]: w3 by itself has total penalty 43+B[4] which is better than w3 and w4 (13+B[5])

B[2]: w2 and w3 on one line is best, with total penalty 0 + B[4]

B[1]: w1 and w2 (penalty 13+B[3]) is better than w1 by itself (penalty 53+B[2])

By looking at above, best way to break lines is

w1 w2

w3

w4 w5

w6

w7 w8

w9 w10

w11 w12 w13

w14

Final array contents:

index
1
2
3
4
5
6
7
8
9
10
11
12
13
14

penalty
837
772
836
772
1771
43
35
520
8
8
0
0
0
0

13+
93+
43+
93+
123+
23+
33+23
83+23
23
23
0
0
0
0

B[3]
B[6]
93+
B[6]
B[6]
33+23

B[6]

2) Let C be an array containing the coin types, C[0] = 1, C[1] = 5, C[2] = 10, C[3] = 25, C[4] = 50.

a. Subproblem[i,j] = number of ways to make i cents in change from coin types C[0], C[1], … C[j]. Any number (including 0) of coins from the available coin types can be used.

b. Here is pseudocode. Translation into Java is left as an exercise.

Algorithm CountWays(x)

Input: x is integer

Output: returns number of ways to make x cents in change from the

 standard American coin types.

Set array C according to specifcation above.

Create 2D array B of size (x+1,5).

for j (0 to 4

for i (0 to x

if (j=0) then B[i,j] (1

else

remaining (i

B[i,j] (0

while (remaining (0)

B[i,j] (B[i,j] + B[remaining,j-1]

remaining (remaining – C[j]

return B[x,4]

We just need to keep track of the subset that generates the maximum benefit for each subproblem. Each time we update a value in the table, we need to additionally store the subset solution for that problem. In terms of pseudocode, we can add an array S[] of lists, where each list S[i] keeps track of the subset that generates the benefit stored in B[i]. Here we are using the last version of the algorithm given in the dynamic programming slides. Add code to initialize S[i] at the beginning of the algorithm. Then, in the update step, instead of only updating B as follows:

if B[w-wk]+bk > B[w] then
B[w] (B[w-wk]+bk ,

change it to:

if B[w-wk]+bk > B[w] then
B[w] (B[w-wk]+bk

S[w] (copy of S[w-wk]
add item k into S[w]

Algorithm 01Knapsack(S, W):

Input: set S of n items w/ benefit bi and weight wi; max. weight W

Output: benefit of best subset with weight at most W; also best subset given as a list.
for w (0 to W do
B[w] (0

S[w] (empty list.

for k (1 to n do
for w (W downto wk do

if B[w-wk]+bk > B[w] then
 B[w] (B[w-wk]+bk

 S[w] (copy of S[w-wk]
 S[w].insertLast((bk,wk)){add item k into S[w] }

return (B[W],S[W])

In the table below, the ith row, jth column represents the solution to the following subproblem: the maximum weight limit is j and only items from row i and above are allowed to be picked. We calculate 2 things for each subproblem: the maximum possible benefit obtainable, and the subset of items required to get that benefit. The benefit is on top, the subset required is on the bottom. Note that the table fills only those values necessary to obtain the final answer, in column 18 , row g.

[image: image1.wmf]Dynamic programming table generated; maximum possible weights below..

Item

(value,

weight)

pairs

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

(12,4) a

0

0

0

0

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

(10,6) b

0

0

0

0

12

12

12

12

12

12

22

22

22

22

22

22

22

22

22

a

a

a

a

a

a

a,b

a,b

a,b

a,b

a,b

a,b

a,b

a,b

a,b

(8,5) c

0

0

12

12

12

12

20

22

22

22

22

30

30

30

30

a

a

a

a

a,c

a,b

a,b

a,b

a,b

a,b,c

a,b,c

a,b,c

a,b,c

(11,7) d

12

20

23

23

23

30

31

33

33

a

a,c

a,d

a,d

a,d

a,b,c

a,c,d

a,b,d

a,b,d

(14,3) e

28

34

37

37

44

a,e

a,c,e

a,d,e

a,d,e

a,b,c,e

(7,1) f

34

44

a,c,e

a,d,e,f

(9,6) g

44

a,d,e,f

The solution is that for maximum total weight 18, and items a,b,c,d,e,f,g, the best way to choose the items is to choose (a,d,e,f), and get a benefit of 44.

Note that there is a second solution possible: choosing items a,b,c,e, for a benefit of 44.

The solution chosen depends on which subset you decide to store when your two possible choices have the same benefit.

3) The change making problem: What follows are several different solutions; most of them utilizing dynamic programming.

The simplest way to solve this is to use the following subproblem definition:

Let D[k] represent the minimum number of coins needed to make k cents in change for the n type of coins given.

To solve this subproblem recursively, you need to choose one coin type (from cn, cn-1, …,c1), and use it. If coin cj is used, then we only need to recursively make k – cj in change. To find the minimum number of coins needed, simply minimize over all possible ways of choosing a coin:

D[k] = 1 + min(D[k-c1], D[k-c2], D[k-c3], …, D[k-cn]), where it is understood that it is not possible to choose a coin value greater than k (you can think of this as defining D[k] = infinity when k < 0).

A recursive, non-dynamic programming solution:

Algorithm minCoinsNeeded(x, c)

Input: x is an amount we need to make in change

c is an array of n coin values, with c[1] = 1, and going up to some value c[n].

Output: minimum number of coins needed to make x in change.

if x = 0

return 0

else if x < 0

return infinity

else

minsofar (x {always possible to use x coins of type 1}

for j(2 to n do

minsofar(min(minsofar, 1+minCoinsNeeded(x-c[j],c)

return minsofar

Dynamic programming solution #1:

We store our subproblem solutions in array D, where D[k] is the minimum of coins needed to make k in change. Following the dynamic programming method, we first compute D[0], then D[1], and so on, until we get to D[x]. At the end, we return D[x].

The pseudocode is as follows:

Algorithm minCoinsNeeded(x, c)

Input: x is an amount we need to make in change

c is an array of n coin values, with c[1] = 1, and going up to some value c[n].

Output: minimum number of coins needed to make x in change.

D(new array of size x.

D[0] (0

for i (1 to x do

D[i] (i {always possible to use i coins of type 1}

for j(1 to n do

if (c[j] (i) and (D[i-c[j]] + 1 < D[i]) {if we can use coin j and

using it uses fewer coins}

D[i] (1+D[i-c[j]]

return D[x];

The run-time cost of this iterative algorithm is O(nx). The innermost loop happens nx times, for each value of i and j.

The space requirements for the iterative algorithm is O(x), since the array D takes of x units of space.

An alternative way to solve this change-making program is to use the following subproblem definition:

Let D[j, k] represent the minimum number of coins needed to make k cents in change for the first j types of coins given (c1, c2, … cj).

To solve this subproblem D[j, k] recursively, you need to choose between all the different ways of choosing coin type j, meaning should I use 0 coins of type cj, 1 coin of type cj, 2 coins of type cj, or more? If r coins of type cj are used, then you only need to recursively figure out the subproblem solution D[j-1,k-r*cj], and add r to the solution present there. To find the minimum number of coins needed, simply minimize over all possible ways of choosing coins of type cj:

D[j, k] = over all r’s between 0 and k/cj, pick minimum of (r + D[j-1, k-r*cj])

Dynamic programming solution #2: The dynamic programming code for using this subproblem definition is left as an exercise for the reader.

4) Now the line-breaking problem:

Algorithm lineBreakPenalty(k, w, L)

Input: array w of word lengths, w is of size n, line width L, word to start at k (use k=0 for the complete solution)

Output: the minimum possible penalty when breaking words w[k], w[k+1], …, w[n-1] into lines, where the penalty is sum of (extra space on a line)3 for each line except the last line.

if k (n-1 { on the last word}

return 0

minsofar (infinity {minimum penalty found so far}

linesofar (0 { length of the line currently being considered}

nextword (k { word to consider adding into current line next}

while (linesofar + w[nextword] < L)

linesofar (linesofar + w[nextword]

if (nextword < n-1)

 then linepenalty ((L-linesofar)3

 else linepenalty (0

minsofar (min(minsofar,

linepenalty +lineBreakPenalty(nextword+1,w,L))

nextword (nextword + 1

return minsofar

Note: the dynamic programming version on the slides is less detailed than this version. It would be a good exercise to write out a more detailed version of the iterative, dynamic programming version that is on the slides.

6

_1193048537.xls
Sheet1

		Dynamic programming table generated; maximum possible weights below..

		Item (value, weight) pairs		0		1		2		3		4		5		6		7		8		9		10		11		12		13		14		15		16		17		18

		(12,4) a		0		0		0		0		12		12		12		12		12		12		12		12		12		12		12		12		12		12		12

												a		a		a		a		a		a		a		a		a		a		a		a		a		a		a

		(10,6) b		0		0		0		0		12		12		12		12		12		12		22		22		22		22		22		22		22		22		22

												a		a		a		a		a		a		a,b		a,b		a,b		a,b		a,b		a,b		a,b		a,b		a,b

		(8,5) c				0		0				12		12				12		12		20		22		22		22				22		30		30		30		30

												a		a				a		a		a,c		a,b		a,b		a,b				a,b		a,b,c		a,b,c		a,b,c		a,b,c

		(11,7) d																		12		20				23		23				23		30		31		33		33

																				a		a,c				a,d		a,d				a,d		a,b,c		a,c,d		a,b,d		a,b,d

		(14,3) e																								28		34						37				37		44

																										a,e		a,c,e						a,d,e				a,d,e		a,b,c,e

		(7,1) f																										34												44

																												a,c,e												a,d,e,f

		(9,6) g																																						44

																																								a,d,e,f

