Computing and Software Systems 343, Spring 2007
Design and analysis of algorithms

Assignment 1 Solutions. Version 1.0.

1 & 2:

Algorithm MaxIndexDiff (A, n)

Input: Array A of n numbers

Output: Max index difference between any two duplicates, or –1 if no duplicates exist.

1. result (-1

2. for j(0 to n-1 do

3.
for i(j+1 to n-1 do

4.
if a[j]=a[i] then

5.

if (i-j)>result

6.

result(i-j

7. return result

The input parameter size is n, the number of items in the input array. The basic operation would be key comparisons between items in the array (there are other ways to do this, but this works). The only key comparison is on line 4. Overall, there are
n(n-1)/2 key comparisons. This can be obtained by solving the summation

[image: image1.wmf]å

å

-

=

-

+

=

1

0

1

1

1

n

j

n

j

i

.

Although I didn’t ask it for this question, here is a loop invariant:

Loop invariant for outer loop on variable j: After the jth iteration, result is set to the maximum index distance between any two duplicates that exist between a number at index k and some other index, where k (j. If there were no such duplicates, then result is still –1.

Note: “after the jth iteration” means before j has been incremented for the next time through the loop. That is, after the 1st iteration means after the iteration where j=1 has completely executed, but the iteration where j=2 has not yet been executed. Another way of explaining the invariant is to say something like “result is set to the maximum distance between any two duplicates that have been found so far”. This statement would receive partial credit, because you do not mention which duplicates have been found and which have not.

3a) The condition i (j is executed n2 times exactly. The condition |A[i] – A[j]| < dmin is evaluated exactly n2 – n times, because it is not checked when i=j. However, we know that |A[i]-A[j]| = |A[j]-A[i]|; in other words, if check the distance from A[i] to A[j], it is the same as the distance from A[j] to A[i]. Thus, we know after A[i] is checked with A[j] the first time, the second time when A[j] is being checked with A[i], the condition |A[i] – A[j]| < dmin must be false. This eliminates another half of the possible pair checks, so (n2-n)/2 is a valid upper bound on the number times a dmin update happens. However, \ the line “dmin(|A[i]-A[j]|” cannot be evaluated n(n-1)/2 times in the worst case because there is no feasible input that would lead to dmin being updated that many times, as far as I know. Many people found an input equivalent to the one in the answer to 3b, and answered 2n-3 as the upper bound; however this would require proof that no other input anyone could ever dream up would use more than 2n-3 updates. A full-credit answer would be that it executes fewer than n(n-1)/2 times, with an appropriate explanation..

3b) An example input that would force 2n-3 updates to dmin is as follows: Let A[0] = 2n, and let A[i] = -2n-i for i(1 and i <n. This input forces n-1 updates to dmin through the first iteration of the outerloop when i=0, and 1 additional update for each of i=1, i=2, …,i =n-2. The update occurs when i and j are adjacent indices.

3c) Loop invariant for outer loop on variable i: After iteration i, dmin is set to the smallest distance between any two different numbers that exist between a number at index k and j, where k (i and j can be anything.

Note: “after the iteration 1” means when i have value 1 and before i has been incremented to value 2 for the next time through the loop, but where the loop has been executed for i=1.

4) There are two different methods for possible improvements. The first one is to start j at i+1 instead of 0, and to remove the condition i (j. This avoids needless checking of pairs that you have checked before as well as the needless checking of the condition i (j. Alternative, you could sort the array into a temporary secondary array, and march through the temporary array comparing adjacent items. The smallest distance will be between adjacent items, so this check would take only linear time; with an n log n sort, this is faster than the n2 number of comparisons the first method takes.

5)

Algorithm recArrayFind(x, A, n):

Input: An element x, an array A with n (1 elements.

Output: The index i such that x= A[i] or –1 if no element of A is equal to x.

if (A[n-1] = x) then

return n-1

else if n = 1

return -1

else

return recArrayFind(x,A,n-1)

In the worst case, we never find the item in the array.

Thus, in the base case, we execute the return –1; this means T(1) = 2, one for the (A[n-1] = x) and one for the n = 1 . In the non-recursive case, we always execute the return recArrayFind(). Thus, we have

T(n) = T(n-1) (the recursive call) + 2 (exactly the same comparisons as in base-case..

T(n) = T(n-1) + 2; T(1) =2. This can be solved to get T(n) = 2n.

6.

T(n) = 4 if n =0
T(n) = 3T(n-1) + n if n > 0.
Proof that for all k (0, T(k) (4k+1.

Base case: for k=0, we have T(0) = 2(40+1=4.

Inductive Step: (applies when k>0).

 Assume that T(k-1) (4(k-1)+1; we need to show that T(k) (4k+1.

We can assume that T(k-1) (4k (by inductive hypothesis)

Multiply both sides by 3 to get

 3T(k-1) (3 * 4k
Now add k to both sides to get

 3T(k-1) + k (3 * 4k + k.

For our values of k > 0, certainly k < 4k. This means

3T(k-1) + k (3 * 4k + 4k = 4 * 4k = 4k+1

But we can replace the left hand side of the inequality with T(k) by the definition of our recurrence equation. Thus,

T(k) (4k+1. This is what we needed to show.

_1190736768.unknown

