Computing and Software Systems 343, Spring 2007
Algorithm design and analysis

Assignment 4 solutions. Version 1.0.

Due Monday, April 30.

1. Show how the iterative (non-space-saving) version of the knapsack algorithm works by showing the array of subproblem solutions for the following input: 5 items with (weight,value) pairs of (3,25), (2,20), (1,15), (4,40), and (5,50); weight capacity W=6. (This is 8.4-1a).

Capacity

	items allowed
	0
	1
	2
	3
	4
	5
	6

	none
	0
	0
	0
	0
	0
	0
	0

	{1}
	0
	0
	0
	$25
	$25
	$25
	$25

	{1,2}
	0
	0
	$20
	$25
	$25
	$45
	$45

	{1,2,3}
	0
	$15
	$20
	$35
	$40
	$45
	$60

	{1,2,3,4}
	0
	$15
	$20
	$35
	$40
	$55
	$60

	{1,2,3,4,5}
	0
	$15
	$20
	$35
	$40
	$55
	$65

a. 1 subset. ({3,5})

b. 1 subset ({3,4})

c. 2 subsets ({4} and {1,3})

2. To find if there is more than one subset that yields the optimal value, you must use a simple variation of the backtracking technique to figure out what items are in the optimal subset. The backtracking technique is described in the text (top of p. 297). Start at the bottom right corner, and compute the optimal solution assuming you must use the last item, and assuming you did not use the item. If the optimal solution value is the same in both cases, then you know there is more than one solution. Otherwise, you must continue starting at the cell representing the case that had the optimal, and check if that subcase had more than one solution. In more detail:
Let V[i,j] represent the ith row and jth column of the table. Then the algorithm would start at V[n,W], where n= total # of items, and W = final total capacity. If V[n-1, W-weight of item n] + value of item n is equal to V[n-1,W] then there is more than one solution. If not, then pick the solution that generated the largest value, and start searching from there, either from V[n-1,W], or V[n-1,W-weight of item n]. This could be a simple recursive call. Keep on recursively backtracking until you make sure that none of the subproblems that the solution in V[n,W] depends upon has more than one optimal solution. The base-case is when you get down to the first row.

3. In the change making problem, you are given n coin denominations in cents:
cn > cn-1 > … > c1, and an amount x in change, and you want to return the number of coins needed to make x in change. You will compute and return the fewest number of coins possible that will make x cents in change, or –1 if it is not possible to make x in change using the given coin types. If a valid solution is found, it should be least number of coins possible in any combination (an optimal solution). Your algorithm will take two parameters as input: the array of coin types (of size n), and the amount in change to make (an integer x). (This is Section 8.4, problem #9).

a. Using pseudocode, write a dynamic program that solves this problem. It may help to think of a recursive way of solving the problem, and then figure out the iterative technique.

b. Argue about why your program is correct. This should be done by stating the subproblem you solved, how your subproblems combined to solve larger subproblems, and how you made sure you considered all possible solutions.

c. Analyze the worst-case running-time and space requirements for your solution, in terms of n and x.

The simplest way to solve this is to use the following subproblem definition:

Let D[k] represent the minimum number of coins needed to make k cents in change for the n type of coins given, except that D[k] = -1 when it is not possible to make k cents in change.

To solve this subproblem recursively, you need to choose one coin type (from cn, cn-1, …,c1), and use it. If coin cj is used, then we only need to recursively make k – cj in change. To find the minimum number of coins needed, simply minimize over all possible ways of choosing a coin:

D[k] = 1 + min(D[k-c1], D[k-c2], D[k-c3], …, D[k-cn]), where it is understood that it is not possible to choose a coin value greater than k. To deal with this constraint in the equation, you could write it mathematically as

D[k] = 1 + min(D[k-c1], D[k-c2], D[k-c3], …, D[k-cj]), where j = index of largest coin that will fit = max({r | cr(k})

You would also define base cases:

D[0] = 0

D[k] = -1 when k < c1 (and k is not 0)

D[k] = [formula above] when k(c1.

A recursive, non-dynamic programming solution:

Algorithm minCoinsNeeded(x, c)

Input: x is an amount we need to make in change

c is an array of n coin values, with c in sorted order.

Output: minimum number of coins needed to make x in change, or –1 if not

 possible.

 if x = 0

 return 0

 else if x < c[1]

return -1

else

minsofar (x+1 // effectively infinity

j (1

 while c[j] (x and j (n do {

subprobsol (minCoinsNeeded(x-c[j],c)

if (subprobsol (0) // if valid solution found

 minsofar(min(minsofar, 1+subprobsol)

 j(j+1

 }

 if minsofar = x+1 return –1

 else return minsofar

Dynamic programming solution #1:

We store our subproblem solutions in array D, where D[k] is the minimum of coins needed to make k in change. Following the dynamic programming method, we first compute D[0], then D[1], and so on, until we get to D[x]. At the end, we return D[x].

The pseudocode is as follows:

Algorithm minCoinsNeeded(x, c)

Input: x is an amount we need to make in change

c is an array of n coin values in sorted order.

Output: minimum number of coins needed to make x in change.

D(new array [0…x] of size x+1.

D[0] (0

for i (1 to x do D[i] (-1

for i (1 to x do

for j(1 to n do

if (c[j] (i) and (D[i-c[j]](0)

 // if we can use coin j and the subprob solution is valid

 if (D[i] <0) // current solution is invalid

D[i] (1 + D[i-c[j]]

 else // two valid solutions, pick cheaper one.

 D[i] (min(D[i], D[i-c[j]] + 1)

 return D[x]

The run-time cost of this iterative algorithm is O(nx). The innermost loop happens nx times, for each value of i and j.

The space requirements for the iterative algorithm is O(x), since the array D takes of x units of space.

An alternative way to solve this change-making program is to use the following subproblem definition:

Let D[j, k] represent the minimum number of coins needed to make k cents in change for the first j types of coins given (c1, c2, … cj).

To solve this subproblem D[j, k] recursively, you need to choose between all the different ways of choosing coin type j, meaning should I use 0 coins of type cj, 1 coin of type cj, 2 coins of type cj, or more? If r coins of type cj are used, then you only need to recursively figure out the subproblem solution D[j-1,k-r*cj], and add r to the solution present there. To find the minimum number of coins needed, simply minimize over all possible ways of choosing coins of type cj:

D[j, k] = over all r’s between 0 and k/cj, pick minimum of (r + D[j-1, k-r*cj])

Dynamic programming solution #2: The dynamic programming code for using this subproblem definition is left as an exercise for the reader.

4. Section 8.1, exercise #7.

a. The formula takes about n multiplies for n!, and about k + (n-k)= n multiplies for k! * (n-k)! and one division, so about 2n operations total. Counting increments and decrements of the variable counters would increase this to about 4n operations total.

b. The formula takes about k multiplies on top, about k multiplies on bottom, so about 2k operations total. Counting increments and decrements of the variable counter would increase this to about 4k operations total.

c. There is lots of recomputation with two recursive calls made by each method, potentially yielding close to 2n total calls and 2n operations.

d. There is about one addition for each spot below the diagonal in a rectangle of dimension n by k; this means about nk/2 additions.

It looks like method (b) is fastest for one single binomial coefficient computation (because k(n). The advantage of method (d) is when you needed to make lots of computations of c[n,k] for many different values of n and k; then if you store the table, you just compute the table once, and spend constant time looking up values each time. Method (d) is also better at avoiding integer overflow errors when n gets large.

5. Another way to break the knapsack problem into subproblem is as follows: Let D[i,j] store the maximum possible benefit possible when using exactly i items from the subset of all possible items {1,2,3,…,n-1,n}, when the weight limit is j, except that when there is no feasible way to pick exactly i items and say within weight limit j, then D[i,j] = 0. Also note that by definition, D[0,j] = 0 for all j. Suppose there are n items, and the weights of the items are in an array w[1..n], and the benefits are in an array b[1..n], and the overall capacity of the initial problem is W. If we have already computed all entries in C[0..n,0..W] then the solution to the overall problem with n items and capacity W is given by

[image: image1.wmf]])

,

[

],...,

,

2

[

],

,

1

[

],

,

0

[

max(

])

,

[

(

max

0

W

n

D

W

D

W

D

W

D

W

i

D

n

i

=

£

£

 (eq 1.0)

The equation above is basically trying all possible numbers of items that the best solution could have. Here is a recursive relationship that a fellow student derived for computing D[i,j]; for purposes of ease of description, assume that D[k,j] is defined so that D[k,j]= -infinity whenever j < 0, and that –infinity + any integer = -infinity.

[image: image2.wmf]ï

ï

î

ï

ï

í

ì

+

-

-

=

=

<

¥

-

=

£

£

otherwise

]))

[

]]

[

,

1

[

(

max

,

0

max(

0

or

0

if

0

0

if

]

,

[

1

i

b

i

w

j

k

D

j

k

j

j

k

D

n

i

(eq 1.1)

Is the above recursive relation correct? If it is, explain why it is correct; if not, explain what is wrong with the above equation.

The equation is not correct, although it is almost correct. In the general case, to compute the overall best that must use k items, the equation is maximizing over all possible ways to choose the next item, and looking up the solution to an appropriate subproblem that must use k-1 items for the rest of the solution. Since the next item is allowed to be chosen from any of the n items given, it is implicitly allowing you to choose the same item in every recursive step; this means you can choose as many copies as a given item as you want. Thus, it is correctly computing the solution to the knapsack problem variant where there are infinitely many copies of all items given. It does not solve the original knapsack problem.

6. Exercises section 5.2, #6.

a. During a BFS search on an undirected graph, if you ever find a cross edge, then you know there is a cycle. In an undirected graph, any non-tree edges are cross edges, and this means that when you are processing a node, if it leads to an existing marked node, then there is a cycle.
Side Note: In a directed graph, a BFS search may find back edges, cross edges, and the like. It is possible to have cross edges that do not form a cycle for directed graphs; consider starting at A in the graph:
 C(A(B
 \ ^
 ______|

b. No, sometimes DFS finds a cycle faster, sometimes BFS finds it faster. In the graph on the left, DFS is faster at cycle-finding, while in the graph on the right, BFS is faster. Here we are assuming we start at a1 and proceed in numbered order in both the sweep procedure and the finding adjacent edges.

[image: image3.png]

_1238870625.unknown

_1238871281.unknown

