Computing and Software Systems 343, Spring 2007
Algorithm design and analysis

Assignment 5 solutions. Version 1.1.

1)  
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2) Routing matrix. 
Algorithm Floyd (W[1..n, 1..n])

    D ( W

    C ( new array [1..n, 1..n] 

    for i( 1 to n do

        for j ( 1 to n do

            if D[i,j] = infinity 



C[i,j] ( -1


else C[i,j] ( j

    for k ( 1 to n do

 
for i ( 1 to n do


    for j ( 1 to n do



if D[i,j] > D[i,k] + D[k,j]



     D[i,j] ( D[i,k]+ D[k,j]



     C[i,j] ( C[i,k]

3) 
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4) DFS forest:

       a             d

      / \

     b   c

    / \   

   e   g

        \

         f

All edges above (a,b), (a,c), (b,e), (b,g), (g,f) are forward edges (and also tree edges.

All other edges: (g,e), (c,f), (d, a), (d,b), (d,g), (d,f), (d,c)  are cross edges. 

Thre are no back edges in this DFS search, which makes sense since there are no cycles. 

Node  Discover time   Finish Time

 a      0         11

 b      1          8

 c      9         10

 d      12        13

 e      2          3 

 f      5          6

 g            4                        7 

5) a) Proving digraph G has topological order iff G is a dag. 

Suppose we are given a directed graph that has a topological sorting solution . This means that if we lay out the graph from left to right in topological order, all edges go from left to right. This means there cannot be any cycles in the graph, as a cycle would require following an edge from right to left.  

For the second part: Suppose we are given a dag G, we need to show that G has a topological order. This can be proven by induction; the statement is as follows:

Any dag G with n nodes must have a topological order. 

Base case: for n=1, a single node graph has a topological order.

Inductive step: Assume (by I.H. ) that any DAG with n nodes has a topological order. 

   Then we need to show that any DAG with n+1 nodes has a topological order. 

  Given a DAG G with n+1 nodes, find a source vertex v. (If there is no source vertex, then the graph has a cycle and is not a DAG). Remove v and its outgoing edges from the graph. Then we have a graph G’ with n nodes; applying the IH tells us that G’ has a topological order. But then we can construct a topological order for G by putting the source vertex as the first vertex in the ordering, and then following the order for G’. Thus, G also has a topological order, and by induction we are done. 

b) To get the most orderings, you would have a DAG with no edges, which means all n! possible perumations of the vertices would all be valid topological orders. 

6) a) Initial search:

       a-b-g-f

       c-d

        |

        e-h

Reverse finish time ordering: cehdabgf

Second DFS search on reverse graph:

   c-h-e

   d

   a-f-g-b

The above lists are the SCC components.

   b) for the adjacency list representation: O(n+m) (two DFS searches of cost O(n+m); reversing the graph also takes O(n+m)).

      for the adjacency matrix representation O(n2) (two DFS searches of cost O(n2). With an adjacency matrix, finding the outgoing edges from a node takes O(n) time, and this needs to happen n times in DFS search, resulting in O(n2) performance.

  c) all DAGs have n SCC’s, where n is the number of vertices in the graph. 
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