TCSS 343, Winter 2007

Midterm 1 (version 1.0)
NAME:

Write answers in the space provided or on the back of each page; attach extra paper if necessary. 75 total possible points!

1) <10 pts> Solve the following recurrence equation:

[image: image1.wmf]î

í

ì

>

+

£

=

3

if

)

2

/

(

4

3

if

1

)

(

n

n

n

T

n

n

T

Obtain a closed form, exact solution. Please show your work. It would be wise to double check your work, and to compute sample values of T(n). You may assume n is always a power of 2 and that n (3.

2) <10 pts> Write a recurrence equation that represents the total number of key additions in the MaxSumRec. “Key additions” means additions of values or subtotals from the input array, which in this case, is all floating point additions. MaxSumRec solves the maximum contiguous subsequence sum problem, when we are given an input array E[0..n-1] and want to compute :

 max { x | x =
[image: image2.wmf]å

=

j

i

k

k

E

]

[

 for some i and j satisfying 0 (i (j (n-1}.

You must give some explanation on how you derived the equation. This can be a simple sentence or two describing how your equation relates to the code, or by going through the code above and labelling the lines with an expressions showing the cost of the line(s). Be sure to include a base case (or initial condition).

Algorithm MaxSumRec(A[left..right])

 Input: array A containing floating point values;
 integer indexes left and right representing subarray of A

 Output: maximum contiguous subsequence sum of A[left..right])

 if left=right

 return A[left]

 mid ((left+right)/2

 // recursively call left and right halves.

 maxleftsum (MaxSumRec(A[left..mid])

 maxrightsum (MaxSumRec(A[mid+1...right])
 maxsofar (max(maxleftsum, maxrightsum)

 // check for subsequences spanning both halves.

 leftbordersum (A[mid]

 maxleftbordersum(A[mid]

 for i (mid-1 downto left // i decreases by one each time through loop.
 leftbordersum (leftbordersum + A[i]

 maxleftbordersum (max(maxleftbordersum, leftbordersum)

 rightbordersum(A[mid+1]

 maxrightbordersum(A[mid+1]

 for i (mid +2 to right
 rightbordersum (rightbordersum + A[i]

 maxrightbordersum (max(maxrightbordersum, rightbordersum)

 return max(maxsofar, maxrightbordersum + maxleftbordersum)

// note: max is a method that returns the maximum value of its arguments

3) <15 pts>One of the closestPair algorithms we studied is as follows:

DivConqClosestPair(S[1..n])

 Input: Array S[1..n] of points on 2D plane. Assumes S is sorted by x-coordinate.

 Output: 2 points from S that are closest together.

 If S has just one point, return error.

 If S has just two points, return them.

 Divide the points of S into S1 and S2,

with S1 containing S[1..n/2]

and S2 containing S[n/2+1..n].

 Pair1 (DivConqClosestPair(S1)

 Pair2 (DivConqClosestPair(S2)

// find the closest pair between sets S1 and S2.

 Let d = min(distance between points in Pair1, distance between points of Pair2)

 Let mid = average of (S[n/2].x, S[n/2+1].x)

 Find index i of point in S closest to but to the right of line x= mid – d

 Find index j of point in S closest to but to the left of line x= mid + d

 Let SS1 = S[i..n/2]

 Let SS2 = S[n/2+1 ..j]

 For each point P1 in SS1

For each point P2 in SS2

compute distance between P1 and P2;

 keep track of minimum distance pair in Pair3

 return either Pair1, Pair2, or Pair3, whichever has a valid pair closest together..

a. Draw (or describe) a set of 8 points that would represent worst-case performance for the algorithm.

b. Draw (or describe) a set of 8 points that would represent the best-case performance for this algorithm.

c. What is the worst-case run-time cost on n points, in terms of big-Oh notation?

d. What is the best-case run-time cost on n points, in terms of big-Oh notation?

4) <5 pts> Clearly define the Divide-and-Conquer strategy. Be sure to list all the major steps of divide and conquer.

5) <5 pts> Here is a function for reversing a list of items, implemented as a linked list.

Algorithm reverse(list B)

 Input: a list B

Output: removes items from B and returns a list C which contains items from B in reverse order. (List B is modified to contain no items).

C(new empty list

while (B.isEmpty() = false)

// remove first item in B, store it in e.

e (B.removeFirst()

// stick it into C at the first spot

C.insertFirst(e)

//end while loop.

return C

Write a USEFUL loop invariant for the loop above; this means that your loop invariant could be used to prove that reverse() is correct.

6) <5 pts> Exactly how many divisions are made in the worst case on input n, for the following algorithm?

Algorithm Binary(n)

 // Input: A positive decimal integer n

 // Output: The number of binary digits in n’s binary representation

count (1

while n > 1 do

count (count + 1

n ((n/2(
return count

7) <5 pts> Circle all the recurrence equations that exactly represent the worst-case cost for binarySearch, when counting number of key comparisons:

T(1) = 0
T(1) = 1
T(1)=1

T(n) = 2T((n/2() + 1 for n> 1
T(n) = T((n/2() + 1 for n> 1
T(n) = T(((n-1)/2() + 1 for n> 1

T(1)=0
T(1)=1
T(1)=1

T(n) = T((n/2() + 1 for n>1
T(n) = T(((n-1)/2() + 1 for n>1
T(n) = T((n/2() + 1 for n>1

8) <20 pts> Write detailed pseudocode for an efficient algorithm solving the following problem: Given a polynomial p(x) = anxn + an-1 xn-1 + … + a1 x + a0 and a point x0 as input, determine the value of the polynomial at that point. In this case, efficient means O(n) worst-case cost. Inefficient but correct algorithms can earn up to 16 points. Example: With input 5x2 +6 and x0 = 2, you would return 5 * 22 + 6 = 26.

PAGE
5

_1231074293.unknown

_1094887197.unknown

