TCSS 343 Winter 2007 midterm1 solutions

1)
[image: image1.wmf]î

í

ì

>

+

£

=

3

if

)

2

/

(

4

3

if

1

)

(

n

n

n

T

n

n

T

.

Counting up level costs, we have n +2n + 4n + 8n + ….

Since we assume n is a power of 2, the last level really occurs at size n=2, which is at level (log n)-1. The total cost is Sum(2in) for i=0…((log n) –2) + base-case level cost. The base-case has cost 4^((log n)-1) = n2/4 , and the summation evaluates to n2 – n;

T(n)= 3n2/4 – n.

2) [DivConqMaxSubsequenceSum recurrence equation]
T(n) = 2T(n/2) + n-1 for n >1; T(n) = 0 for n=1.

We get the 2T(n/2) by seeing that we divide the original array of size n into two halves, and recursively solve each half. In two loops of the conquer phase, the algorithm iterates through the array starting from the item just beyond the middle item, moving outward. This results in n-2 additions (the net result is one addition comparison for each item in the array except for the two middle items). There is also one more to add up the left and right bordersums. Thus, we get n-2 +1 or n-1 non-recursive additions.

3) [DivConq closest pair]

a. To get worst-case performance, you want SS1 and SS2 to contain all points of S1 and S2 at every recursive step. The easiest way to do this is to make all x-coordinates equal. The set {(0,i)| 1(i(8} of 8 points works.

b. To get best case behavior, you want SS1 and SS2 to contain no points, so nothing needs be done in the “conquer” step. This means making the left half and right half of each subset of points be “far” from the other half but “close” to points in its own half. The following set works: (6,0), (7,0), (10,0), (11,0), (-6,0), (-7,0), (-10,0), (-11,0).

c. Worst case is O(n2). The general recurrence equation would be T(n) = 2T(n/2) + n2, but this is O(n2) because the costs of each level from top down is n2 + n2/2 + n2/4 + … (2n2.

d. Best-case is O(n log n). The general recurrence equation is T(n) = 2T(n/2) + n, which is the same as best-case quicksort and worst-case mergesort. Note: if you assume the “dividing into left and right sets” does not copy the elements but that you are passing indices, then it it is possible to get the recurrence equation of the form T(n) = 2T(n/2) + 1, and an O(n) best-case cost. However, it would in reality still take O(n log n) just to get an initial unsorted set of points into sorted order before you could call this algorithm.

4) There are three main steps in divide and conquer design technique: a) Divide the input into parts, typically into two halves. b) Recursively solve the problem on each part. c) combine the solutions to the smaller subproblems to find an overall solution for the entire problem.

5) loop invariant: After interation i, C contains the first i items from the original B in reverse order.

6) log2n divisions are made in the computing # of binary digits algorithm.

7) The correct equations for binary search are:

T(1) = 1

T(n) = T((n/2() + 1 for n> 1

T(1)=1

T(n) = T(((n-1)/2() + 1 for n>1

Note that we are counting the number of “three-way comparisons” in these equations.

A 3-way comparison can return 3 values, equal to, less than, or greater than.

8) This is easiest when you specify the polynomial as an array of coefficients.
PolyValue(x, a)
Input: number x and an array a=[a0, a1, … an] of coefficients to a polynomial
Output: The value of the polynomial input at point x.

// This is a simple brute-force technique:
result (0
x_to_i(1
for i(0 to n do
 result (result + ai * x_to_i
 x_to_i (x_to_i * x.

return result

_1231074293.unknown

