AutoCAD 3D. Training Manual

Written by Kristen S. Kurland
(®) AutoCAD is a registered trademark of Autodesk, Inc.

Chapter 1
Controlling Views

Viewports 1.1

-Vports Command

1. Type -VPORTS at the command prompt.

Command: -vports
Enter an option [Save/Restore/Delete/Join/SIngle/?/2/3/4] <3>: enter
Enter a configuration option [Horizontal/Vertical/Above/ Below/Left/Right] <Right>: enter
Regenerating model.
2. Click once in each vport to make it active.
3. Type a ZOOM option in each viewport.

NOTE: AutoCAD plots only the current vport.

Screen divided into three tiled viewports

3D Viewports 1.2

1. Choose View, Viewports, New Viewports
2. Click the dropdown option for Setup and click 3D.
3. Click OK.

New Viewports tab of the Viewports dialog

Preset Views 1.3

1. Choose View, Named Views
2. Click Orthographic \& Isometric Views tab of the View dialog.
3. Click One of the following view options:

Top
Bottom
Front
Back
Left
Right
Southwest Isometric
Southeast Isometric
Northeast Isometric
Northwest Isometric
4. Click the Set Current button
5. Click the OK button

Vpoint Command (Tripod) 1.4

Displays a compass and tripod for defining a view rotation. The compass represents a two dimensional globe.

1. Choose View, 3D Views, Vpoint
or
2. Type VPOINT at the command prompt.

Command: vpoint
Rotate/<View point><-0.614,-0.614,0.500>: (enter)
3. Click a point on the compass to define the viewing angle.

Vpoint Command (Rotate) 1.5

Enters a rotation angle at the viewpoint prompt.

1. Choose View, 3D Views, Vpoint
or
2. Type VPOINT at the command prompt.

Command: vpoint
Rotate/<View point><-0.614,-0.614,0.500>: \mathbf{R} (enter)
Enter angle in XY plane from X axis <225>: 225 (enter)
Enter angle from XY plane < 30 >: 15 (enter)
Regenerating drawing.

DDVpoint Command 1.6

1. Choose View, 3D Views, Viewpoint Preset
or
2. Type DDVPOINT at the command prompt.

Command: ddvpoint
3. Set a viewing angle by typing the From X axis and XY Plane angle.

or

4. Pick a viewing angle in the 2 graphics

Left graphic $=$ From X Axis
Right graphic $=$ In XY Plane
5. Click OK.

Resultant viewport withnew3D view

Vpoint Command (Vector Option) 1.7

Enters coordinates at the viewpoint prompt.

1. Choose View, 3D Views, Vpoint or
2. Type VPOINT at the command prompt.

Command: vpoint
Rotate/<View point> <-1.690,-1.981,2.995>: -1,-1,1 Regenerating drawing.

Other Preset Viewpoints 1.8

1. Choose View, 3D Views, and one of the following viewpoint
options:

Top, Bottom,
Left, Right,
Front, Back
SW Isometric
SE Isometric
NW Isometric
NE Isometric

Resultant viewport with entered coordinates $-1,-1,1$

Plan View 1.9

1. Choose View, 3D Views, Plan View the one of the following: Current UCS, World UCS, Named UCS
or
2. Type PLAN at the command prompt.

Command: plan
Enter an option [Current ucs/Ucs/World] <Current>:
Regenerating model.

Current ucs Goes to the plan view of the current UCS.

Ues At the command line type in a name of a previously named Coordinate System.
World Goes to the plan view of the World Coordinate System.

Thickness and Elevation

Thickness Command 2.1

Sets the current 3D solid thickness.

1. Type THICKNESS at the command prompt.

Command: thickness
Enter new value for THICKNESS <0.0000>: $\mathbf{2 . 0 0}$

Changing the Current Thickness 2.2

Changing the current properties of an object changes its thickness.

1. Choose Modify, Properties...
or
2. Type DDMODIFY or DDCHPROP at the command prompt.
Command: ddmodify or ddchprop
3. Choose from the Standard Toolbar

Elevation Command 2.3

Stores the current elevation relative to the current UCS for the current space.

1. Type ELEVATION at the command prompt.

Command: elevation
Enter new value for ELEVATION <0.0000>: $\mathbf{2 . 0 0}$

Shortcut to Elevation \& Thickness Commands 2.4

1. Type ELEV at the command prompt.

Command: elev
Specify new default elevation: <2.0000>:
Specify new default thickness: <3.0000>:

Chapter 3

Visualizing the Model

Hide Command 3.1

Regenerates a three-dimensional model with hidden lines suppressed.

1. Type HIDE at the command prompt.

Command: hide
Regenerating Model.
OR
2. Choose View, Hide.

Objects Before Hidden Line Removal

Objects After Hidden Line Removal

Shade Command 3.2

Displays a flat-shaded image of the drawing in the current viewport while performing a hidden line removal.

1. Type SHADE at the command prompt.

Command: shade
Regenerating Drawing.
OR
2. Choose View, Shade.

The following are various shade options:
FlatShaded

GourandShaded (Smoother)

Shadedge Variable 3.3

Controls shading of edges in rendering.

1. Type SHADEDGE at the command prompt.

Command: shadedge

Enter new value for SHADEDGE <3>: (enter)

0 Faces shaded, edges not highlighted
1 Faces shaded, edges drawn in background color
2 Faces not filled, edges in object color
3 Faces in object color, edges in background color

Shadif Variable 3.4

Sets the ratio of diffuse reflective light to ambient light (in percentage of diffuse reflective light).

1. Type SHADEDIF at the command prompt.

Command: shadedif
Enter new value for SHADEDIF < 70> :20

Hidden Line Removal and Shade for Plots 3.5

If your drawing contains 3D faces, meshes, extruded objects, sur faces, or solids, you can direct AutoCAD to remove hidden lines or shade from specific viewports when you plot the paper space view.

1. Type PLOT at the command prompt.

Command: plot
2. Choose the check box beside the option to remove hidden lines.

Hidden Line Removal in Mviews (Paper Space) 3.6

1. Type

MVIEW at the command prompt
Command: mview
Specify corner of viewport or
[ON/OFF/Fit/Shadeplot/Lock/Object/Polygonal/Restore/2/ 3/4] 〈Fit>: s

Shade plot? [As displayed/Wireframe/Hidden/Rendered] <As displayed>: \mathbf{h}
Select objects: pick mview in paperspace.
Select objects: enter
NOTE: You do not see t,he effect of this command until you plot the drawing.

Chapter 4

Z Coordinates

Entering 3D Coordinates 4.1

3D Coordinates

Entering 3D Cartesian coordinates (X,Y,Z) is similar to entering 2D coordinates (X, Y). In addition to specifying X and Y values, you specify a Z value.

3D Polyline

1. Type Any command asking for a "point" at the command prompt.

Command: 3DPOLY
Specify start point of polyline: $\mathbf{1 , 1 , 0}$
Specify endpoint of line or [Undo]: $\mathbf{1 , 2 , 1}$
Specify endpoint of line or [Undo]: $\mathbf{2 , 2 , 1}$
Specify endpoint of line or [Close/Undo]: $\mathbf{2 , 1 , 0}$
Specify endpoint of line or [Close/Undo]: $\mathbf{1 , 1 , 0}$

Moving in the Z Direction

Moving in the Z Direction 4.2

Move Command

To move an object in the Z direction, use the move command.

1. Type MOVE at the command prompt.

Command: move
Select objects: (pick object) 1 found
Select objects: hit enter
Specify base point or displacement: $\mathbf{0 , 0 , 0}$
Specify second point of displacement or <use first point as displacement>: 0,0,1

Original Circle Draw at Elevation Zero

Circle Moved - 2 Units in the Z Direction

3D Point Filters 4.3

To place a point 1 inch above the back left corner of the rectangle, you can use point filters. Before issuing the point filter command, use DDPTYPE and choose a visible point style.

1. Type Any command asking for a "point" at the command prompt.
Command: point
Point: .xy
of end P1
of (need Z): $\mathbf{2}$

Chapter 5
 User Coordinate System

UCSICON 5.1

The UCS icon represents the orientation of the UCS axes and the location of the current UCS origin. It also represents the current viewing direction relative to the UCS XY plane.

1. Choose View, Display, UCS Icon, On/Off.
or
2. Type UCSICON at the command prompt.

Command: ucsicon
Enter an option [ON/OFF/All/Noorigin/ORigin] <ON>:

ON Displays the UCS icon.
OFF Turns off the display of the UCSICON
All Affects the display of the UCSICON in all viewports.

Noorigin Always displays the UCS at the lower left corner.

ORigin Shows the UCS at the $0,0,0$ origin of the current UCS.

UCS icon turned ON

UCS Overview 5.2

Manages user coordinate systems. The user coordinate system provides an alternate movable coordinate system for coordinate entry, planes of operation, and viewing. Most AutoCAD geometric editing commands are dependent on the location and orientation of the UCS.

1. Type UCS at the command prompt.

Command: ucs
Enter an option [New/Move/orthoGraphic/Prev/Restore/ Save/Del/Apply/?/World] <World>:
2. Choose One of the following UCS options:

New Defines a new coordinate system by one of six methods: Origin, Z Axis, 3 Point, Object, Face, View X, Y, Z

Origin	Defines a new UCS by shifting the origin of the current UCS, leaving the direction of the X, Y, and Z axes unchanged.
ZAxis	Allows you to define a new origin.
$\mathbf{3}$ Point	Specifies a UCS by its origin and a point on the positive X and Y axes.
Object	Lets you define a new coordinate s ystem by pointing at an entity (except a 3D polyline, polygon mesh, or viewport entity).
Face	Aligns the UCS to the selected face of a solid object.
View	Establishes a new coordinate system whose XY plane is perpen dicular to your viewing direction (i.e. parallel to your screen).

$\mathbf{X} / \mathbf{Y} / \mathbf{Z} \quad$ Rotates the ucs around a specified axis

World UCS 5.3

1. Type UCS at the command prompt.

Command: ucs
Current ucs name: *NO NAME*
Enter an option [New/Move/orthoGraphic/Prev/Restore/ Save/Del/Apply/?/World] <World> (press enter)
World Returns the UCS back to the original World UCS.
NOTE: This is the UCS you should use
when creating Wblocks and inserting Wblocks. It is the only UCS guaranteed to be the same in allAutoCADdrawings.

Tip: To enter coordinates relative to the WCS

- Precede coordinate values with an asterisk (*).

Entering @*2,0,0 specifies a point two units in the X direction of the last point entered relative to the WCS.

Entering @2,0,0 specifies a point two units in the X direction of the last point entered relative to the UCS.

In practice, most coordinates are entered relative to the UCS rather than the WCS.

3 Point UCS 5.4

1. Type UCS at the command prompt.

Command: ucs
Enter an option [New/Move/orthoGraphic/Prev/Restore/ Save/Del/Apply/?/World] <World>: \mathbf{n}
Specify origin of new UCS or [ZAxis/3point/OBject/ Face/View/X/Y/Z] <0,0,0>: $\mathbf{3}$
Specify new origin point $\langle 0,0,0\rangle$: pick origin
Specify point on positive portion of X -axis
<3.53,7.73,0.00>:
Specify point on positive-Y portion of the UCS XY plane <2.53,8.73,0.00>:

Setting the UCS with the 3 Point Method

UCS modified

Plan View and UCS 5.5

1. Type
PLAN at the command prompt.
Command: plan

UCS View 5.6

1. Type UCS at the command prompt.

Command: ucs
Current ucs name: *NO NAME*
Enter an option [New/Move/orthoGraphic/Prev/Restore/ Save/Del/Apply/?/World] <World>: n
Specify origin of new UCS or [ZAxis/3point/OBject/
Face/View/X/Y/Z] <0,0,0>: vOrigin/ZAxis/3point/
OBject/View/X/Y/Z/Prev/Restore/Save/Del/?/<World>:V
View
Establishes a new coordinate system whose
XY plane is perpendicular to your viewing direction (i.e. parallel to your screen).

UCS Object 5.7

1. Type UCS at the command prompt.

Command: ucs
Current ucs name: *NO NAME*
Enter an option [New/Move/orthoGraphic/Prev/Restore/ Save/Del/Apply/?/World] < World>: \mathbf{n}
Specify origin of new UCS or [ZAxis/3point/OBject/ Face/View/X/Y/Z] <0,0,0>: vOrigin/ZAxis/3point/
OBject/View/X/Y/Z/Prev/Restore/Save/Del/?/
<World>:OB
Object Defines a new coordinate system based on a selected
3D object. The new UCS has the same extrusion
direction (positive Z axis) as that of the selected object.

Other New UCS Options 5.8

1. Type UCS at the command prompt.

Command: ucs
Current ucs name: *NO NAME*
Enter an option [New/Move/orthoGraphic/Prev/Restore/ Save/Del/Apply/?/World] <World>: \mathbf{n}
Specify origin of new UCS or [ZAxis/3point/OBject/ Face/View/X/Y/Z] <0,0,0>:vOrigin/ZAxis/3point/
OBject/View/X/Y/Z/Prev/Restore/Save/Del/?/
<World>:

AutocAD Help Topics for New UCS

```
UCS Command
Cmarght hmuramen
Hemger uset cewavine wytemm []]
```

```
Sucstoatur:
```

Sucstoatur:
Tedsmeactew UCS
Tedsmeactew UCS
CCommodmee urg

```
CCommodmee urg
```


แ..

Defies a new coonfrash sysiem by sie of sir rechnds

Origin

Drines a sew UCS by shiting the anyn of the cusart UCS, leamp the drecton of $t=x, Y$, and Z Nive unthanged

LCS ai mavarge

mene
Specity a sew ange port resathe to the arign of the cunert UCS. I you do not specitf a 2 casmitate vilue far the urigin, this uptias uses the cument elwatant

74nk

Saving the UCS 5.9

1. Type UCS at the command prompt.

Command: ucs
Current ucs name: *NO NAME*
Enter an option [New/Move/orthoGraphic/Prev/Restore/ Save/Del/Apply/?/World] <World>: s

Enter name to save current UCS or [?]:

Restoring the UCS 5.10

1. Type
 UCS at the command prompt.

Command: ucs
Current ucs name: *NO NAME*
Enter an option [New/Move/orthoGraphic/Prev/Re store/Save/Del/Apply/?/World] <World>: \mathbf{r}

Enter name of UCS to restore or [?]: 1

UCS Dialog Box 5.11

1. Type DDUCS at the command prompt.

Command: dducs

Chapter 6 3D Orbit Commands

Introduction to 3D Orbit Command 6.1

Controls Interactive 3D Viewing

1. Type 3DORBIT at the command prompt.

Command: 3dorbit
OR
2. Choose View, 3D Orbit.

The 3D Orbit Arcball appears.
3. Click on one of the 3D Orbit arcball locations.

Inside the Arcball - Allows movement in any direction

Pan and Zoom in 3D Orbit 6.2

1. Click with the right mouse button while in the 3D Orbit command.
2. Choose PAN or ZOOM from the pop-up menu.

Projection Mode 6.3

1. Click with the right mouse button while in the 3D Orbit command.
2. Choose Projection.
3. Choose Parallel or Perspective.

Parallel

Displays objects so that two parallel lines in a drawing never con verge at a single point. The shapes in your drawing always remain the same and do not appear distorted when they are closer.

Perspective

Displays objects in perspective so that all parallel lines converge at one point. Objects appear to recede into the distance, and parts of the objects appear larger and closer to you. The shapes are some what distorted when the object is very close. This view correlates more closely to what your eye sees.

Camer Swivel and Distancea 6.5

Simulates the effect of turning the camera. Changes the target of the view.

1. Click with the right mouse button while in the 3D Orbit command.
2. Choose More.
3. Choose SwivelCamera.
4. Choose a location in the view to change the camera.

Visual Aids 6.6

1. Click with the right mouse button while in the 3D Orbit command.
2. Choose Visual Aids.
3. Choose one of the visual aids options.

Compass Option

3D Grid Option

TIP: Use GRIDUNIT to change the spacing of the grid units.

UCSIcon

Clipping Planes

Clipping Planes 6.7

1. Click with the right mouse button while in the 3D Orbit command.
2. Choose More.
3. Choose one of the clipping planes options.

NOTE: If you have clipping planes ON when you exit the 3D Orbit command, they will remain ON.

Continuous Orbit 6.8

1. Click with the right mouse button while in the 3D Orbit command.
2. Choose More.
3. Choose Continuous Orbit.
4. Click and drag to start the continuous 3D Motion.
This movement controls the direction and speed of the orbit.

Chapter 7
 Dynamic View - Perspective

DView Camera Option 7.1

1. Choose View, 3D Orbit
or
2. Type DVIEW at the command prompt.

Command: dview
Select objects or <use DVIEWBLOCK>:
pick objects
Enter option
[CAmera/TArget/Distance/POints/PAn/Zoom/TWist/ CLip/Hide/Off/Undo]: ca

Specify camera location, or enter angle from XY plane, or [Toggle (angle in)] <90.0000>: 30

Specify camera location, or enter angle in XY plane from X axis, or [Toggle (angle from)] <90.00000>: 45

Enter option
[CAmera/TArget/Distance/POints/PAn/Zoom/TWist/ CLip/Hide/Off/Undo]:

Regenerating model.
Note: You can also twist and pick a camera location.

Setting a Camera Location

DView Target Option 7.2

1. Choose View, 3D Orbit
or
2. Type DVIEW at the command prompt.

Command: dview
Select objects or <use DVIEWBLOCK> pick objects:
Select objects: enter
Enter option
[CAmera/TArget/Distance/POints/PAn/Zoom/TWist/ CLip/Hide/Off/Undo]: TA

Specify camera location, or enter angle from XY plane,
or [Toggle (angle in)] <35.2644>: pick a target loca tion

Enter option
[CAmera/TArget/Distance/POints/PAn/Zoom/TWist/
CLip/Hide/Off/Undo]: enter
Regenerating model.
Note: You can also type a target location.

Setting a Target Location

Setting Camera Target with Points 7.3

Moves the camera in or out along the line of sight relative to the target. Once a perspective view is set, zooming is not allowed. Zoom functions must be done in the DVIEW command.

1. Choose View, 3D Dynamic View.
or
2. Type DVIEW at the command prompt.

Command: dview
Select objects: pick objects
Select objects: enter
CAmera/TArget/Distance/POints/PAn/Zoom/ TWist/CLip/Hide/Off/Undo/<eXit>: PO

Setting Perspective Distance 7.4

Moves the camera in or out along the line of sight relative to the target. Once a perspective view is set, zooming is not allowed. Zoom functions must be done in the DVIEW command.

1. Choose View, 3D Dynamic View.
or
2. Type DVIEW at the command prompt.

Command: dview
Select objects: pick objects
Select objects: enter
CAmera/TArget/Distance/POints/PAn/Zoom/TWist/
CLip/Hide/Off/Undo/<eXit>: D
New camera/target distance <1.7321>: pick

Turning Perspective Off 7.5

1. Choose View, 3D Dynamic View.
or
2. Type DVIEW at the command prompt.

Command: dview
Select objects: pick objects
Select objects: enter
CAmera/TArget/Distance/POints/PAn/Zoom/TWist/
CLip/Hide/Off/Undo/<eXit>: OFF

Zoom to a Perspective

Resultant Perspective View

Zooming in Dview 7.6

1. Choose View, 3D Dynamic View.
or
2. Type DVIEW at the command prompt.

Command: dview
Select objects: pick objects
Select objects: enter
CAmera/TArget/Distance/POints/PAn/Zoom/TWist/
CLip/Hide/Off/Undo/<eXit>:Z
Adjust lens length <9.666mm>: pick

Panning in Dview 7.7

1. Choose View, 3D Dynamic View.
or
2. Type DVIEW at the command prompt.

Command: dview
Select objects: pick objects
Select objects: enter
CAmera/TArget/Distance/POints/PAn/Zoom/TWist/
CLip/Hide/Off/Undo/<eXit>:PA
Displacement base point: pick
Second point: pick

Clipping Objects 7.8

1. Choose View, 3D Dynamic View.
or
2. Type DVIEW at the command prompt.

Command: dview
Select objects: pick objects
Select objects: enter
CAmera/TArget/Distance/POints/PAn/Zoom/TWist/
CLip/Hide/Off/Undo/<eXit>:CL
Back/Front/<Off>: F
Eye/<Distance from target><4.4721>: pick
Resultant View of Clipped Objects

Twisting Objects 7.9

1. Choose View, 3D Dynamic View.
or
2. Type DVIEW at the command prompt.

Command: dview
Select objects: pick objects
Select objects: enter
CAmera/TArget/Distance/POints/PAn/Zoom/TWist/
CLip/Hide/Off/Undo/<eXit>:TW
New view twist <0.00>: pick

Hidden Line Removal 7.10

1. Choose View, 3D Dynamic View.
or
2. Type DVIEW at the command prompt.

Command: dview
Select objects: pick objects
Select objects: enter
CAmera/TArget/Distance/POints/PAn/Zoom/TWist/
CLip/Hide/Off/Undo/<eXit>:H

Chapter 8
 3D Model Objects

Wireframes 8.1

A wireframe model is a skeletal description of a 3D object. There are no surfaces in a wireframe model; it consists only of points, lines, and curves that describe the edges of the object. With AutoCAD you can create wireframe models by positioning 2D (planar) objects anywhere in 3D space. AutoCAD also provides some 3D wireframe objects, such as 3D polylines (that can only have a CONTINUOUS linetype) and splines. Because each object that makes up a wireframe model must be independently drawn and positioned, this type of modeling can be the most time-consuming.

Surfaces 8.2

Surface modeling is more sophisticated than wireframe modeling in that it defines not only the edges of a 3D object, but also its surfaces. The AutoCAD surface modeler defines faceted surfaces using a polygonal mesh. Because the faces of the mesh are planar, the mesh can only approximate curved surfaces. With Mechanical Desktop, you can create true curved surfaces. To differentiate these two types of surfaces, AutoCAD calls faceted surfaces, meshes.

1. Choose Draw, Surfaces.

Solids 8.3

Solid modeling is the easiest type of 3D modeling to use. With the AutoCAD solid modeler, you can make 3D objects by creating basic 3D shapes: boxes, cones, cylinders, spheres, wedges, and tori (donuts). You can then combine these shapes to create more complex solids by joining or subtracting them or finding their intersecting (overlapping) volume. You can also create solids by sweeping a 2D object along a path or revolving it about an axis.

NOTE: Because each modeling type uses a different method for constructing 3D models and editing methods vary in their effect on the different model types, it is recommended that you not mix modeling methods.

1. Choose Draw, Solids.

Chapter 9
2D Solids and 3D Faces

2D Solid 9.1

1. Choose Draw, Solids, 2D Solid.
or
2. Type SOLID at the command prompt.

Command: solid
First point: P1
Second point: P2
Third point: P3
Fourth point: P4
Third point: enter

2D Hatch 9.2

1. Choose Draw, Hatch..
2. Choose the Other Predefined tab.
3. Choose Solid.

NOTE: 2D Solids and Hatches cannot be rendered or shaded.

3D Face 9.3

3DFACE creates a three- or four-sided surface anywhere in 3D space. You can specify different Z coordinates for each corner point of a 3D face. 3DFACE differs from SOLID, which creates a threeor four-sided surface that is parallel to the current UCS and can be extruded.

With 3DFACE, you control which edges of a 3D face are visible, allowing accurate modeling of objects with holes. Entering i or invisible before the first point of an edge makes the edge invisible.

1. Choose Draw, Surfaces, 3D Face.
or
2. Type 3DFACE at the command prompt.

Command: 3dface
First point: pick
Second point: pick
Third point: pick
Fourth point: pick
Third point: enter

Edge 9.4

1. Choose Draw, Surfaces, Edge.
2. Type EDGE at the command prompt.

Command: edge
Display/<Select edge>: pick a 3D edge

3D Invisible Edge 9.5

1. Choose Draw, Solids, 3D Face.
or
2. Type 3DFACE at the command prompt.

Command: 3dface
First point: P1
Second point: P2
Third point: i P3
Fourth point: P4
Third point: i P5
Fourth point: P6
Third point: P7
Fourth point: P8
Third point: enter
NOTE: You must enter an "i" for invisible before the face is chosen.

Pface 9.7

1. Type PFACE at the command prompt.

Command: pface
Specify location for vertex 1-8: P1-P8
Face 1, vertex 1:
Enter a vertex number or [Color/Layer]: 1
Face 1, vertex 2:
Enter a vertex number or [Color/Layer] <next face>: $\mathbf{2}$
Face 1, vertex 3:
Enter a vertex number or [Color/Layer] <next face>: 6
Face 1, vertex 4:
Enter a vertex number or [Color/Layer] <next face>: 7
Face 1, vertex 5: enter
Enter a vertex number or [Color/Layer] <next face>:
Face 2, vertex 1:
Enter a vertex number or [Color/Layer]: 2
Face 2, vertex 2:
Enter a vertex number or [Color/Layer] <next face>: 3
Face 2, vertex 3:
Enter a vertex number or [Color/Layer] <next face>: 4
Face 2, vertex 4:
Enter a vertex number or [Color/Layer] <next face>: 6
Face 2, vertex 5:
Enter a vertex number or [Color/Layer] <next face>:
Face 3, vertex 1:
Enter a vertex number or [Color/Layer]: 4

Face 3, vertex 2:
Enter a vertex number or [Color/Layer] <next face>: 5
Face 3, vertex 3:
Enter a vertex number or [Color/Layer] <next face>: 6
Face 3, vertex 4:
Enter a vertex number or [Color/Layer] <next face>:
Face 4, vertex 1:
Enter a vertex number or [Color/Layer]:

Chapter 10 3D Surfaces

3DBox 10.1

1. Choose Draw, Surfaces, 3D Surfaces..
2. Pick the box from the dialog menu.
or
3. Type AI_BOX at the command prompt.

Command: ai_box
Initializing... 3D Objects loaded.
Corner of box: pick
Specify length of box: 4
Specify width of box or [Cube]: $\mathbf{2}$
Specify height of box: 2
Specify rotation angle of box about the Z axis or [Refer ence]: $\mathbf{0}$

Pyramid 10.2

1. Choose Draw, Surfaces, 3D Surfaces...
2. Pick the pyramid from the dialog menu.
or
3. Type AI_PYRAMID at the command prompt.

Command: ai_pyramid
Specify first corner point for base of pyramid: pick
Specify second corner point for base of pyramid: <Ortho on> 4

Specify third corner point for base of pyramid: $\mathbf{4}$ Specify fourth corner point for base of pyramid or [Tetrahedron]: 4
Specify apex point of tetrahedron or [Top]: .xy
of pick
(need Z): $\mathbf{4}$

Wedge 10.3

1. Choose Draw, Surfaces, 3D Surfaces...
2. Pick the wedge from the dialog menu.
or
3. Type AI_WEDGE at the command prompt.

Command: ai_wedge
Specify corner point of wedge: pick
Specify length of wedge: 4
Specify width of wedge: 2
Specify height of wedge: $\mathbf{1}$
Specify rotation angle of wedge about the Z axis: $\mathbf{0}$

Dome 10.4

1. Choose Draw, Surfaces, 3D Surfaces...
2. Pick the dome from the dialog menu.
or
3. Type AI_DOME at the command prompt.

Command: ai_dome
Specify center point of dome: pick
Specify radius of dome or [Diameter]: 3
Enter number of longitudinal segments for surface of dome <16>: 20
Enter number of latitudinal segments for surface of dome <8>: 10

Sphere 10.5

1. Choose Draw, Surfaces, 3D Surfaces...
2. Pick the sphere from the dialog menu.
or
3. Type AI_SPHERE at the command prompt.

Command: ai_sphere
Specify center point of sphere: pick
Specify radius of sphere or [Diameter]: $\mathbf{3}$
Enter number of longitudinal segments for surface of sphere <16>: 25
Enter number of latitudinal segments for surface of sphere <16>: $\mathbf{2 5}$

Cone 10.6

1. Choose Draw, Surfaces, 3D Surfaces...
2. Pick the cone from the dialog menu.
or
3. Type AI_CONE at the command prompt.

Command: ai_cone
Specify center point for base of cone: pick
Specify radius for base of cone or [Diameter]: $\mathbf{2}$
Specify radius for top of cone or [Diameter] <0>: $\mathbf{5}$
Specify height of cone: 3
Enter number of segments for surface of cone <16>: enter

Torus 10.7

1. Choose Draw, Surfaces, 3D Surfaces...
2. Pick the torus from the dialog menu.
or
3. Type AI_TORUS at the command prompt.

Command: ai_torus
Specify center point of torus: pick
Specify radius of torus or [Diameter]: 6
Specify radius of tube or [Diameter]: $\mathbf{1}$
Enter number of segments around tube circumference
<16>: enter
Enter number of segments around torus circumference
$\langle 16\rangle$: enter <16>: enter

Dish 10.8

1. Choose Draw, Surfaces, 3D Surfaces...
2. Pick the dish from the dialog menu.
or
3. Type AI_DISH at the command prompt.

Command: ai_dish
Specify center point of dish: pick
Specify radius of dish or [Diameter]: 3
Enter number of longitudinal segments for surface of dish <16>: 20
Enter number of latitudinal segments for surface of dish <8>: 15

Mesh 10.9

Creates a planar mesh whose M and N sizes determine the number of lines drawn in each direction along the mesh.

1. Type ai_mesh at the command prompt.

Command: ai_mesh
Initializing... 3D Objects loaded.
Specify first corner point of mesh: $\mathbf{1 , 1 , 1}$
Specify second corner point of mesh: 4,1,1
Specify third corner point of mesh: 4,4,2
Specify fourth corner point of mesh: $\mathbf{1 , 4 , 1}$
Enter mesh size in the M direction: 20
Enter mesh size in the N direction: 10

Revolved Surface 11.1

Creates a revolved surface about a selected axis.

1. Choose Draw, Surfaces, Revolved Surface...
or
2. Type Revsurf at the command prompt.

Command: revsurf
Current wire frame density: SURFTAB1=6 SURFTAB2=6

Select object to revolve: pick
Select object that defines the axis of revolution: pick
Specify start angle <0>: enter
Specify included angle (+=ccw, -=cw) <360> enter

Suftab1 and Surftab2 11.2

Sets the number of tabulations for both directions to be generated for RULESURF and TABSURF. Also sets the mesh density in ROTATE3D the M direction for REVSURF and EDGESURF commands.

1. Type Surftab1 at the command prompt.

Command: surftab1
Enter new value for SURFTAB1 <6>: $\mathbf{3 0}$
2. Type Surftab2 at the command prompt.

Command: surftab2
Enter new value for SURFTAB2 <6>: 30

Tabulated Surfaces 11.3

Creates a tabulated surface from a path curve and a direction vector.

1. Choose Draw, Surfaces, Tabulated Surfaces
or
2. Type TABSURF at the command prompt.

Command: tabsurf
Select object for path curve:
Select object for direction vector:

Path for Curve

Ruled Surface 11.4

Creates a ruled surface between two curves.

1. Choose Draw, Surfaces, Ruled Surface
or
2. Type RULESURF at the command prompt.

Command: rulesurf
Current wire frame density: SURFTAB1=6
Select first defining curve: P1
Select second defining curve: P2

More Ruled Surface Examples 11.4

Edge Surface 11.5

Creates a three-dimensional polygon mesh

1. Choose Draw, Surfaces, Edge Surface
or
2. Type EDGESURF at the command prompt.

Command: edgesurf
Current wire frame density: SURFTAB1=6 SURFTAB2=6
Select object 1 for surface edge: P1
Select object 2 for surface edge: P2
Select object 3 for surface edge: P3
Select object 4 for surface edge: P4

Chapter 12 Solids

Extrude 12.1

Creates unique solid primitives by extruding existing two-dimensional objects. You can extrude multiple objects with EXTRUDE.

1. Choose Draw, Solids, Extrude.
or
2. Type EXTRUDE at the command prompt.

Command: extrude
Current wire frame density: ISOLINES=4
Select objects: pick objects
Select objects: enter
Specify height of extrusion or [Path]: 4
Specify angle of taper for extrusion <0> : enter

Extrude with Taper 12.2

1. Choose Draw, Solids, Extrude.
or
2. Type EXTRUDE at the command prompt.

Command: extrude
Current wire frame density: ISOLINES=4
Select objects: pick objects
Select objects: enter
Specify height of extrusion or [Path]: 3 Specify angle of taper for extrusion $\langle 0\rangle$: $\mathbf{1 5}$

Extrude Curves 12.3

1. Choose Draw, Solids, Extrude.
or
2. Type EXTRUDE at the command prompt.

Command: extrude
Current wire frame density: ISOLINES=4
Select objects: pick curved pline
Select objects: enter
Specify height of extrusion or [Path]: $\mathbf{3}$

Specify angle of taper for extrusion $\langle 0\rangle$: $\mathbf{0}$

Extrude Along a Path 12.4

EXTRUDE also creates solids by extruding two-dimensional objects (profiles) along a specified path.

1. Choose Draw, Solids, Extrude.

Type EXTRUDE at the command prompt.
Command: extrude
Current wire frame density: ISOLINES=4
Select objects: P1
Select objects: enter
Specify height of extrusion or [Path]: p Select extrusion path: P2

HiddenLine Removal of Extruded
Circle

Revolve 12.5

Creates a composite region or solid by addition.

1. Choose Draw, Solids, Revolve
2. Type REVOLVE at the command prompt.

Command: revolve
Current wire frame density: ISOLINES=4
Select objects: pick profile
Select objects: enter
Specify start point for axis of revolution or
define axis by [Object/X (axis)/Y (axis)]: \mathbf{o}
Select an object: pick axis
Specify angle of revolution <360>: enter

Box Solid 12.6

Creates a three-dimensional solid box.

1. Choose Draw, Solids, Box.
2. Type BOX at the command prompt

Command: box
Specify corner of box or [CEnter] <0,0,0>: pick corner Specify corner or [Cube/Length]: pick opposite corner Specify height: 2

Sphere 12.7

Creates a three-dimensional solid sphere.

1. Choose Draw, Solids, Sphere.
or
2. Type SPHERE at the command prompt.

Command: sphere
Current wire frame density: ISOLINES=4
Specify center of sphere $\langle 0,0,0\rangle$: pick point Specify radius of sphere or [Diameter]: 2

Isolines 12.8

Specifies the number of isolines per surface on objects. Valid integer values are from 0 to 2047.

1. Type ISOLINES at the command prompt.

Command: ISOLINES
Enter new value for ISOLINES <4>: 15

Facetres 12.9

Adjusts the smoothness of shaded and rendered objects and objects with hidden lines removed. Valid values are from 0.01 to 10.0.

1. Type FACETRES at the command prompt.

Command: FACETRES
Enter new value for FACETRES <.1000>: 5

Cone 12.10

Creates a three-dimensional solid cone.

1. Choose Draw, Solids, Cone.
2. Type CONE at the command prompt.

Command: cone
Current wire frame density: ISOLINES=4
Specify center point for base of cone or [Elliptical] $<0,0,0>$: pick point

Specify radius for base of cone or [Diameter]: $\mathbf{2}$
Specify height of cone or [Apex]: 4

Wedge12.11

Creates a three-dimensional solid wedge.

1. Choose Draw, Solids, Wedge.
or
2. Type WEDGEat the command prompt.

Command: _wedge
Specify first corner of wedge or [CEnter] <0,0,0>: pick Specify corner or [Cube/Length]: pick

Specify height: 2

Torus 12.12
Creates a donut-shaped solid.

1. Choose Draw, Solids, Torus.
or
2. Type TORUS at the command prompt.

Command: torus
Current wire frame density: ISOLINES=4
Specify center of torus $\langle 0,0,0\rangle$: pick point
Specify radius of torus or [Diameter]: $\mathbf{6}$
Specify radius of tube or [Diameter]: $\mathbf{2}$

Chapter 13 3D Edits

Rotate 3D 13.1

Rotates objects about a three-dimensional axis.

1. Choose Modify, 3D Operation, Rotate3D.

or

2. Type ROTATE3D at the command prompt.

Command: rotate3D
Current positive angle: ANGDIR=counterclockwise ANGBASE=0

Select objects: pick
Select objects: enter
Specify first point on axis or define axis by
[Object/Last/View/Xaxis/Yaxis/Zaxis/2points]: \mathbf{x}
Specify a point on the X axis $\langle 0,0,0\rangle$: pick
Specify rotation angle or [Reference]: 90

Object Before Rotation

Object Rotated 90 degrees around x-axis

Align 13.2

1. Choose Modify, 3D Operation, Align.

or

2. Type ALIGN at the command prompt.

Command: align
Select objects: pick the wedge
Select objects: enter
Specify first source point: P1
Specify first destination point: P2
Specify second source point: P3
Specify second destination point: P4
Specify third source point or <continue>: enter
Scale objects based on alignment points? [Yes/No] <N>:
enter

Wedge Aligned to the Box (Not Scaled)

Mirror 3D 13.3

1. Choose Modify, 3D Operation, Mirror 3D.

or

2. Type MIRROR3D at the command prompt.

Command: mirror3D
Select objects: pick the circle
Select objects: enter
Specify first point of mirror plane (3 points) or
[Object/Last/Zaxis/View/XY/YZ/ZX/3points] <3points>:
P1
Specify second point on mirror plane: P2
Specify third point on mirror plane: P3
Delete source objects? [Yes/No] <N>: enter

Circle Mirrored around 3 Points

3D Array (Rectangular) 13.4

1. Choose Modify, 3D Operation, 3D Array

or

2. Type 3DARRAY at the command prompt.

Command: 3darray

Select objects: pick the cube
Select objects: enter
Enter the type of array [Rectangular/Polar] <R>: enter
Enter the number of rows (---) <1>: $\mathbf{3}$
Enter the number of columns $(||\mid)<1>: 4$
Enter the number of levels (...) <1>: 2
Specify the distance between rows (---): $\mathbf{5}$
Specify the distance between columns $(\|| |)$: $\mathbf{4}$
Specify the distance between levels (...): $\mathbf{8}$

Arrayed Objects in 3D Isometric

Arrayed Objects in 3D Viewpoint

3D Array (Polar) 13.5

1. Choose Modify, 3D Operation, 3D Array

or

2. Type 3DARRAY at the command prompt.

Command: 3darray
Select objects: pick cube
Select objects: enter
Enter the type of array [Rectangular/Polar] <R>: \mathbf{p}
Enter the number of items in the array: $\mathbf{5}$
Specify the angle to fill (+=ccw, -=cw) < $360>$: enter
Rotate arrayed objects? [Yes/No] <Y>: enter
Specify center point of array: mid of axis line
Specify second point on axis of rotation: pick

Chapter 14

Solid Composites

Subtract 14.1

Creates a composite region or solid by subtraction.

1. Choose Modify, Solids Editing, Subtract
or
2. Type SUBTRACT at the command prompt.

Command: subtract
SUBTRACT Select solids and regions to subtract from...
Select objects: pick the box
Select objects: (press enter)
Select solids and regions to subtract...
Select objects: pick the cylinder
Select objects: enter

Objects Subtracted from Box

Union 14.2

Creates a composite region or solid by addition.

1. Choose Modify, Solids Editing, Union.
2. Type UNION at the command prompt.

Command: union
Select objects: pick cylinder \& box
Select objects: enter

Solid Objects Unioned Together

Intersect 14.3

Creates a solid based on the intersection of two existing solids.

1. Choose Modify, Solids Editing, Intersect
2. Type INTERSECT at the command prompt.

Command: intersect
Select objects: pick cylinder and box Select objects: enter

Intersection of Cylinder and Box

Chapter 15 Modifying Solid Objects

Extruding Faces 15.1

1. Choose Modify, Solids Editing, Extrude face NOTE: Must be a solid to extrude the face.
2. Choose a face to extrude. If you choose more than one face, hold the SHIFT key to deselect unwanted faces.
3. Press ENTER.
4. Specify height of extrusion or [Path]: . $\mathbf{2 5}$
5. Specify angle of taper for extrusion $\langle 0\rangle: 45$

Tapered Faces 15.2

1. Choose Modify, Solids Editing, Taper face
2. Choose a face(s) to taper. If you choose more than one face, hold the SHIFT key to deselect unwanted faces.
3. Press ENTER.
4. Specify the base point: pick the back left corner
5. Specify another point along the axis of tapering: pick point
6. Specify the taper angle: $\mathbf{4 5}$

Solid validation started.
Solid validation completed.

Before Taper

After Taper

Delete Faces 15.3

1. Choose Modify, Solids Editing, Delete face
2. Choose a face to delete. If you choose more than one face, hold the SHIFT key to deselect unwanted faces.

3. Press ENTER

4. Choose the face to delete.

Copy Faces 15.4

1. Choose Modify, Solids Editing, Copy face
2. Choose a face to copy. If you choose more than one face, hold the SHIFT key to deselect unwanted faces.
3. Press ENTER.
4. Pick the solid face to copy.
5. Pick a new location.

Color Face 15.5

1. Choose Modify, Solids Editing, Color face
2. Choose a face to change the color of. If you choose more than one face, hold the SHIFT key to deselect unwanted faces.
3. Press ENTER.
4. Choose a color to change the face to.

Imprint 15.6

1. Extrude objects (i.e. walls) to create a solid object
2. Change the UCS and draw an object on a face of one of the walls.
3. Choose Modify, Solids Editing, Imprint.
4. Select a 3D solid: pick solid
5. Select an object to imprint: pick circle
6. Delete the source object $\langle\mathrm{N}\rangle$: \mathbf{y}

Extrude Imprint to Create Openings 15.7

1. Choose Modify, Solids Editing, Extrude Faces.
2. Select the circle that was imprinted.
3. Deselect any unwanted faces.
4. Type -8 as the height of extrusion (or desired height)

Clean 15.8

1. Choose Modify, Solids Editing, Clean.
2. Select a 3D solid: pick imprinted circle.

Shell 15.9

You can create a shell or a hollow thin wall with a specified thickness from your 3D solid object. AutoCAD creates new faces by offsetting existing ones inside or outside their original positions. AutoCAD treats continuously tangent faces as single faces when offsetting.

1. Choose
 Modify, Solids Editing, Shell.

Select a 3D solid: pick
Remove faces or [Undo/Add/ALL]: enter
Enter the shell offset distance: . 5

Chapter 16
 Enhancing the Drawing
 Process

Creating Sections

Creating Sections 16.1

1. Open the drawing called 3DBottle.DWG
2. Create a layer called Section. Make it the current layer.
3. Choose Draw, Solids, Section.
4. Choose all 3 solids making up the bottle.

Select objects:
Specify first point on Section plane by [Object/ Zaxis/View/XY/YZ/ZX/3points]:ZX
Specify a point on the ZX -plane $\langle 0,0,0\rangle$:quad of bottle.
5. 3DRotate the section to a flat plane.

Slice 16.2

Slices a set of solids with a plane.

1. Choose Modify, Draw, Slice.
2. Type SLICE at the command prompt.

Command: slice
Slice plane by Object/Zaxis/View/XY/YZ/ZX/
<3points>: ZX
Point on ZX plane $<0,0,0>$: quad of bottle
Both sides/<Point on desired side of the plane>: pick the side of the bottle you want to keep.

Create a SOLVIEW Viewport 16.3

1. Choose

File, New...
2. Choose Use a Template from the startup dialog.
3. Double Click Ansi_c.dwt as the template file to start from.

This create a new drawing with a border and one floating Model Space.
4. Double Click MODEL from the Status Bar. Note the change to Paper Space.
5. Double Click PAPER from the Status Bar to toggle back to Model Space.

Drawing with a Model Space View

Insert a Drawing

1. Choose Insert, Block...
2. Choose the drawing called 3DBOTTLE.DWG to insert.
3. Insert the block anywhere in the Model Space view
4. Double Click MODEL at the Status Bar and resize the Model Space view port in Paper Space.
5. Double Click PAPER at the Status Bar to return to Model Space.
6. Type

ZOOM, 1XP at the command prompt.

Create an Orthogonal View

1. Choose Draw, Solids, Setup, View.
or
2. Type SOLVIEW at the command prompt.

Command: solview
Ucs/Ortho/Auxiliary/Section/<eXit>: O
Pick side of viewport to project: P1
View center: P2
Clip first corner: P3
Clip other corner: P4
View name: front
Ucs/Ortho/Auxiliary/Section/<eXit>:

Create a 2D Section with Soldraw 16.4

Generates profiles and sections in viewports created with SOLVIEW.
SOLDRAW can only prepare viewports that have been created with SOLVIEW.

1. Choose Draw, Solids, Setup, Drawing.
or
2. Type Command: soldraw

Select viewports to draw: P1
Select objects: 1 found
Select objects: enter
3 solids selected.
NOTE: If your object was an inserted block, you need to first explode it so it becomes a solid.

Resultant Section and Solid

Creating a 3D View

Create a 3D View Using UCS 16.5

1. Click MSPACE and the plan view of the 3D Bottle.
2. Choose View, 3D Viewport, SW Isometric...
3. Type UCS at the command prompt.

Command: ucs
Origin/ZAxis/3point/OBject/View/X/Y/Z/ Prev/Restore/Save/Del/?/<World>: view

This sets the current UCS parallel to the screen. We now need to save this ucs.
4. Type

UCS at the command prompt.
Command: ucs
Origin/ZAxis/3point/OBject/View/X/Y/Z/
Prev/Restore/Save/Del/?/<World>: save
?/Desired UCS name: 3dview
5. Click PSPACE at the command prompt
6. Choose Draw, Solids, Setup, View

Command: solview
Ucs/Ortho/Auxiliary/Section/<eXit>: u
Named/World/?/<Current>: \mathbf{n}
Name of UCS to restore: 3dview
Enter view scale<1.0000>: enter
View center: pick
View center: pick

Create a Hidden Line View 16.6

1. Double Click MODEL to return to Model Space.
2. Choose Draw, Solids, Setup, Profile.
3. Type SOLPROF at the command prompt.

Command: solprof
Select objects: pick solids
Select objects: enter
Display hidden profile lines on separate layer? $<$ Y > : enter
Project profile lines onto a plane? <Y>: enter
Delete tangential edges? <Y>: enter
3 solids selected.

Chapter 17
Rendering

Render Command 17.1

Creates a photorealistic or realistically shaded image of a threedimensional wireframe or solid model.

1. Open the AutoCAD drawing called 3DBOTTLE.DWG.
2. Type MSPACE to go to the model space view.
3. Choose View, Render, Render...
or
4. Type RENDER at the command prompt.

Command: render
5. Click the Render button.

Rendered Viewport

Render a Selection 17.2

1. Choose View, Render, Render...
or
2. Type RENDER at the command prompt.

Command: render
3. Click Query for Selection.
4. Click Render.
5. Choose the objects to render.

RenderedSelection

Render a Cropped Window 17.3

1. Choose View, Render, Render...
or
2. Type RENDER at the command prompt.

Command: render
3. Click Crop Window.
4. Click Render.
5. Choose a window to render.

Cropped Rendered Window

Render without Dialog Box 17.4

1. Choose View, Render, Render...
2. Type RENDER at the command prompt.

Command: render
3. Click Skip Render Dialog.
4. Click Render.

Turn Render Dialog Box On with RPREF 17.5

1. Type RPREF at the command line.

Command: rpref
3. Click Skip Render Dialog.

Render to File 17.6

1. Choose View, Render, Render..
or
2. Type RENDER at the command prompt.

Command: render
3. Click the dropdown list under Viewport.
4. Choose File as the destination options.

Render to Render Window 17.7

1. Choose View, Render, Render...
2. Type RENDER at the command prompt.

Command: render
3. Click the dropdown list under Viewport.
4. Choose Render Window as the destination option.

Render Window

Print Screen 17.8

1. Choose View, Render, Render..
or
2. Type RENDER at the command prompt.

Command: render
3. Press PRINT SCREEN on the keyboard to copy your rendered image to the Window's clipboard.

Light Scale Icon and Smoothing Angle 17.9

1. Choose View, Render, Render...
or
2. Type RENDER at the command prompt.

Command: render
3. Click Light Scale Icon and Smoothing to change the values.

Light Icon Scale

Controls the size of the light blocks in the drawing. The value is the current scale factor (in drawing units) of rendering blocks in the drawing. Enter a real number to rescale the blocks. The scale factor affects the following blocks: OVERHEAD, DIRECT, and SH_SPOT.

Smoothing Angle

Sets the angle at which AutoCAD interprets an edge. The default is 45 degrees. Angles greater than 45 degrees are considered edges. Angles less than 45 degrees are smoothed. To define an edge as less than 45 degrees, reduce the smoothing angle.

Chapter 18
Materials

Materials Command 18.1

1. Choose View, Render, Materials...

> or
2. Type RMAT at the command prompt.

Command: rmat
3. Click the Materials Library...button.
4. Pick Concrete Tile as the material.
5. Click the Preview button.
6. Click the Import button.
7. Click OK.

Materials Library 18.2

1. Choose View, Render, Materials Library.
or
2. Type MATLIB at the command prompt.

Command: matlib
3. Pick a material from the material list.
4. Click the Preview button and preview as a sphere or cube.

Materials Library, Importing, \& Attaching Materials

Applying Materials with Attach 18.3

1. Choose View, Render, Materials...
or
2. Type RMAT at the command prompt.

Command: rmat
3. Click the Materials Library....button.
4. Pick Glass as the material.
5. Click the Preview button.
6. Click the Import button.
7. Click OK .
8. Click the Attach button.
9. Pick Objects to attach materials to.
10. Exit the materials menu and render the viewport.

NOTE: You need to set the rendering type to Photorealistic Rendering in order to see the materials

1. Choose View, Render, Render
2. Choose Photoreal as the render type.
3. Render the viewport.

Crad
\#

Applying Materials by Layer 18.4

1. Choose View, Render, Materials...
2. Type RMAT at the command prompt.

Command: rmat
3. Click Click Copper as the material
4. Click the By Layer button.
5. Click Ball as the layer to attach materials to.
6. Exit the materials menu and render the viewport.

Applying Materials by Color 18.5

1. Choose View, Render, Materials..
or
2. Type RMAT at the command prompt.

Command: rmat
3. Click Click Copper as the material.
4. Click the By Layer button.
5. Click Ball as the layer to attach materials to.
6. Exit the materials menu and render the viewport

Complex Materials 18.6

1. Choose View, Render, Materials...
2. Type RMAT at the command prompt.

Command: rmat
3. Click Click Med. Ash Wood as the material.
4. Click the Attach button.
5. Click the base to attach materials to.
6. Exit the materials menu and render the viewport.

Adjusting Materials with Material Mapping 18.7

1. Choose View, Render, Mapping
or
2. Type SETUV at the command prompt.

Command: setuv
3. Pick objects to adjust (base).
4. Press enter when finished selecting.
5. Pick the type of projection to adjust.
6. Click the Adjust Coordinates... button.
7. Adjust the Planar coordinates as necessary.
8. Click OK.

New Materials 18.6

1. Choose View, Render, Materials...
or
2. Type RMAT at the command prompt.

Command: rmat
3. Choose the New...button.
4. Create a new material.
5. Apply the material to an object.

Adjusting Material Appearances 18.7

1. Choose View, Render, Materials...
or
2. Type RMAT at the command prompt.

Command: rmat
3. Choose the New...button.
4. Create a new material.
5. Apply the material to an object.

Advanced Material Options 18.10

1. Choose Tools, Options...
2. Choose the Systems TAB.
3. Choose the Properties...button under the Current 3D Graphics Display.
4. Check the Enable Textures and Enable Materials options.
5. Apply a textured material such as checkers.
6. Shade the drawing to see the material result.

Chapter 19
Lights

Point Light 19.1

1. Choose View, Render, Light.
or
2. Type LIGHT at the command prompt.

Command: light
3. Choose Point as the light type.
4. Click the New... button.
5. Type POINT 1 as the new light name.
6. Choose Modify to place the light.
7. Type 'ZOOM to zoom if necessary
8. Pick a location (Hint: use .xy filters)
9. Exit the light menu.
10. Type ZOOM PREVIOUS to zoom to the original view.
11. Type RENDER at the command prompt to render the viewport with the new lights.

Light Location

Spot Light

Spot Light 19.2

1. Choose View, Render, Light.
or
2. Type LIGHT at the command prompt.

Command: light
3. Click the dropdown box for point light and change it to spot light.
4. Click the New... button.
5. Type SPOT1 as the new light name.
6. Click Modify.
7. Pick The Target and Light Locations (Use Endpoint and Midpoint Object Snaps).
8. Exit the light menus.
9. Type RENDER at the command prompt to render the viewport with the new lights. —

Light Target

Setting the Shadow Options in the Light
 Command 19.3

1. Choose View, Render, Light.
2. Type LIGHT at the command prompt.

Command: light
3. Click S1 and the Modify...button.
4. Click the box for Shadows On.
5. Choose Shadow Options and set the shadow Map Size to 512 .
6. Exit the light menus.

Changing Shadow Options in Render Command 19.5

1. Type RENDER at the command prompt.
2. Choose More Options under the Rendering Options dialog.
3. Change the Minimum Bias to . 1
4. Change the Maximum Bias to 2
5. Choose Medium as the Anti-Aliasing type.
6. Click Discard back faces to speed up the rendering processes by having AutoCAD eliminate the calculations for faces it doesn't need to render.

Photo Real Render Options

区

Anti-Aliasing \quad Face Contols

C Minimal Г Discard back faces
.

- Medium

C High

C Low $\overline{\mathrm{V}}$ Back face normal is negative
Depth Map Shadow Controls
Minimum Bias:
Maximum Bias:
Texture Map Sampling
C Point Sample

- Linear Sample

C Mip Map Sample

Cancel Help

Preferences 19.5

1. Choose Tools, Options...
or

2.	Type	OPTIONS at the command prompt.
Command: options		

2. Type OPTIONS at the command prompt.

Command: options
3. Choose the Display tab.
4. Set the Rendered object smoothness to 5 .
5. Render the scene.

Distant Light 19.7

1. Choose View, Render, Light.
2. Type LIGHT at the command prompt.

Command: light
3. Click the dropdown box for point light and change it to distant light.
4. Click the New... button.
5. Type PROVO as the new light name.
6. Choose the Sun Angle Calculator...button.
7. Choose the Geographic Location...button.
8. Choose Provo, UTAH as the nearest big city.
9. Exit the light menus.
10. Type RENDER at the command prompt to render the viewport with the new lights.

Chapter 20

 Scenes
Scene Command 20.1

A scene represents a particular view of all or any portion of the drawing, with or without lights.

1. Choose View, Render, Scene.
or
2. Type SCENE at the command prompt.

Command: scene
3. Choose New.. to create a new scene.
4. Type POINT as the scene name.
5. Choose P1 as the light to include in the scene.
6. Click OK to exit the Scene dialog box.

Render a Scene

1. Choose View, Render, Render...
or
2. Type RENDER at the command prompt.

Command: render
3. Choose POINT as the scene to render.
4. Click Render.

Modify a Scene

1. Choose View, Render, Scene.
or
2. Type SCENE at the command prompt.

Command: scene
3. Choose Modify...to change the lights and views in the scene.

Adding a View to a Scene 20.2

1. Create a perspective view with the DVIEW command.
2. Type DDVIEW at the command prompt . This will load a dialog box with predefined saved views.
Command: ddview
3. Choose PERSPECTIVE as the saved view.
4. Choose Set Current
5. Click OK

Chapter 21
Backgrounds

Solid Background 21.1

1. Choose View, Render, Background
or
2. Type BACKGROUND at the command prompt.

Command: background
3. Click Solid as the background type.
4. Render the viewport.

Gradient Background 21.2

1. Choose View, Render, Background
2. Type BACKGROUND at the command prompt.

Command: background
3. Click Gradient as the background type.
4. Adjust the colors as desired.
5. Render the viewport.

Image Background 21.3

1. Choose View, Render, Background
or
2. Type BACKGROUND at the command prompt.

Command: background
3. Click the Image radio button.
4. Choose Find File under the Image section.
5. Choose the C:\Program Files\ACAD2004 TEXTURES\valley_l.tga image file as the background
6. Click OK.
7. Render the viewport.

Merge Background 21.4

1. Choose View, Render, Background
2. Type BACKGROUND at the command prompt.

Command: background
3. Click the Merge radio button.
4. Render the viewport.

Chapter 22
Landscaping

Placing a New Landscape Object 22.1

1. Choose View, Render, Landscape New...
or
2. Type LSNEW at the command prompt.

Command: Isnew
3. Pick Cactus as the landscape item.
4. Click the Position button.
5. Pick a new position for the Cactus.
6. Exit the Landscape dialog box.
7. Type Render at the command prompt.
8. Choose Photo Raytrace as the Rendering Type.

Editing an Existing Landscape Object 22.2

1. Choose View, Render, Landscape Edit...
2. Type LSEDIT at the command prompt.

Command: Isedit
3. Pick the Cactus as the landscape item to edit.
4. Edit the height of the Cactus.

Custom Landscape Library 22.3

1. Create an image and opacity image for desired object. NOTE: Youwill need to use an external paint program to do this.
2. Choose View, Render, Landscape Library...
or
3. Type LSLIB at the command prompt.

Command: Islib
4. Click New...to create a new landscape object.
5. Edit the other dialog options as desired.
6. Click OK and save the render library.
7. Type LSNEW at the command prompt to place the new image in your drawing.
8. Render the viewport.

Chapter 23
 Misc. Render Commands

Raytracing 23.1

Introduction

Ray Tracing is a global illumination based rendering method. It traces rays of light from the eye back through the image plane into the scene. Then the rays are tested against all objects in the scene to determine if they intersect any objects. If the ray misses all objects, then that pixel is shaded the background color. Ray tracing handles shadows, multiple specular reflections, and texture mapping in a very easy straight-forward manner.

Note that ray tracing, like scan-line graphics, is a point sampling algorithm. We sample a continuous image in world coordinates by shooting one or more rays through each pixel. Like all point sampling algorithms, this leads to the potential problem of aliasing, which is manifested in computer graphics by jagged edges or other nasty visual artifacts.

In ray tracing, a ray of light is traced in a backwards direction. That is, we start from the eye or camera and trace the ray through a pixel in the image plane into the scene and determine what it hits. The pixel is then set to the color values returned by the ray.
www.siggraph.org/education/ materials/HyperGraph/raytrace/rtrace0.htm

1. Choose View, Render, Render...

or

2. Type RENDER at the command prompt.

Command: render

3. Choose PhotoRaytrace as the render type.

Set Antialiasing 23.2

1. Choose View, Render, Render...
or
2. Type RENDER at the command prompt.

Command: render
3. Choose More Options...under Rendering Options.
4. Choose High as the Anti-Aliasing method.
5. Click OK.
6. Render the viewport.

Adaptive Sampling 23.3

1. Choose View, Render, Render...
or
2. Type RENDER at the command prompt.

Command: render
3. Choose More Options...under Rendering Options.

Phata Raytrace Render Optiom			
betiatury		Fere Cornch	
Otand		Ducadbask fana (2) tixck lace nomal is reyative	
OLm			
O veres		Dephtle Shatm Cotuts	
© H Heh		Mromon Bian Herenflios	2
Adeque Smping			4
($\square_{\text {Ense }}$			
Cornisi Theitad	500	TetainNoeSercho	
		Oforsiont	
Heonumber	E	© Limen Sexp	
	003	OHeMs 5 molo	
0 OK		Anat	

Ray Tree Depth 23.4

1. Choose View, Render, Render...
2. Type RENDER at the command prompt.

Command: render
3. Choose More Options... under Rendering Options.

Change Subsampling Options 23.5

1. Choose View, Render, Render...
or
2. Type RENDER at the command prompt.

Command: render
3. Choose the Sub-sampling dropdown list.
4. Choose 3:1
5. Click OK
6. Render the viewport.

Rendered Bottle with Sub-Sampling 3:1

Fog 23.6

Provides visual cues for the apparent distance of objects.

1. Choose View, Render, Fog
or
2. Type FOG at the command prompt.

Command: fog
3. Click Enable Fog to turn FOG on.
4. Edit the remaining dialog options as desired.

Render Statistics 23.6

Provides visual cues for the apparent distance of objects.

1. Choose View, Render, Statistics

or

2. Type STATS at the command prompt.

Command: stats
3. Save the statistics to a file or choose OK to exit.

