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a b s t r a c t

Understanding how the human brain is able to efficiently perceive and understand a visual scene is still a
field of ongoing research. Although many studies have focused on the design and optimization of neural
networks to solve visual recognition tasks, most of them either lack neurobiologically plausible learning
rules or decision-making processes. Here we present a large-scale model of a hierarchical spiking neural
network (SNN) that integrates a low-level memory encoding mechanism with a higher-level decision
process to perform a visual classification task in real-time. The model consists of Izhikevich neurons and
conductance-based synapses for realistic approximation of neuronal dynamics, a spike-timing-dependent
plasticity (STDP) synaptic learning rule with additional synaptic dynamics for memory encoding, and an
accumulator model for memory retrieval and categorization. The full network, which comprised 71,026
neurons and approximately 133 million synapses, ran in real-time on a single off-the-shelf graphics
processing unit (GPU). The network was constructed on a publicly available SNN simulator that supports
general-purpose neuromorphic computer chips. The network achieved 92% correct classifications on
MNIST in 100 rounds of randomsub-sampling,which is comparable to other SNNapproaches andprovides
a conservative and reliable performance metric. Additionally, the model correctly predicted reaction
times frompsychophysical experiments. Because of the scalability of the approach and its neurobiological
fidelity, the current model can be extended to an efficient neuromorphic implementation that supports
more generalized object recognition and decision-making architectures found in the brain.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Object recognition in monkeys has traditionally been associ-
ated with an anatomically distinct pathway termed the ‘‘what’’ (or
ventral) visual stream (Ungerleider & Haxby, 1994), which con-
sists of at least V1, V2, V4, and various regions in the inferior
and anterior temporal cortices (e.g., TEO, TE1–TE3, TEa, and TEm)
(Rolls, 2012; Rolls & Deco, 2002). While traveling along this path-
way, the characteristics of the stimuli to which neurons respond
become more complex (Rolls, 2012; Ungerleider & Haxby, 1994),
ranging from rather simple stimuli with small receptive fields such
as oriented bars in V1 (Hubel & Wiesel, 1965) to relatively large
and more abstract objects such as faces in the inferotemporal cor-
tex (IT) (Bruce, Desimone, & Gross, 1981). These empirical ob-
servations have led to a number of classic studies modeling the
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ventral stream as a hierarchical feed-forward network, such as the
Neocognitron (Fukushima, 1980), HMAX (Riesenhuber & Poggio,
1999), or VisNet (Rolls, 2012; Wallis & Rolls, 1997)—although it
should be noted that the notion of a strictly hierarchical or feed-
forward network has been questioned by recent anatomical stud-
ies that reserve a more important functional role for bi-directional
and non-hierarchical connections (Markov et al., 2012, 2011). In-
spired by these classic models, a variety of more conventional
machine learning algorithms have emerged that demonstrate the
extraordinary performance in certain recognition tasks, such as
convolutional neural networks (CNNs) in handwriting recognition
(Ciresan, Meier, Masci, & Schmidhuber, 2011; LeCun, Bottou, Ben-
gio, & Haffner, 1998; Simard, Steinkraus, & Platt, 2003)—or for that
matter, adaptive boosting in face recognition (Viola & Jones, 2001).
Although CNNs implement a network topology that is biologically-
inspired, they often rely on the error backpropagation (gradient de-
scent), which has been criticized for being biologically unrealistic
because it involves variables that cannot be computed locally (Rolls
& Deco, 2002). Part of the challenge is thus to discover how compa-
rably hard problems can be solved by more biologically plausible
networks relying on local learning rules that operate on the ab-
straction level of a synapse.
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A potential candidate for such a mechanism is spike-timing-
dependent plasticity (STDP), (Bi & Poo, 2001; Sjöström, Turrigiano,
& Nelson, 2001; Song, Miller, & Abbott, 2000), a paradigm which
modulates the weight of synapses according to their degree of
causality. Many different variants of STDP seem to exist in the
brain, and many different models to explain them have emerged
over the years (Morrison, Diesmann, & Gerstner, 2008). In an effort
to implement STDP-like learning rules using only information
locally available at the synapse without algorithmically storing the
spike timings, several models have proposed to pair presynaptic
spiking with postsynaptic voltage, determining the weight change
by using either the temporal change of postsynaptic voltage (Porr,
Saudargiene, & Worgotter, 2004), a piece-wise linear function
to approximate postsynaptic voltage (Gorchetchnikov, Versace, &
Hasselmo, 2005) or postsynaptic Calcium concentration (Brader,
Senn, & Fusi, 2007; Graupner & Brunel, 2012). Networks with STDP
have been shown to be able to learn precise spike times through
supervised learning (Legenstein, Naeger, & Maass, 2005; Pfister,
Toyoizumi, Barber, & Gerstner, 2006), to implement reinforcement
learning (Florian, 2007; Izhikevich, 2007b; O’Brien & Srinivasa,
2013), to develop localized receptive fields (Clopath, Busing,
Vasilaki, & Gerstner, 2010), or to classify highly correlated patterns
of neuronal activity (Brader et al., 2007).

Once an internal representation of a visual object is built in the
brain, the question then remains how thismemory can be retrieved
from the system in order to make a perceptual decision. A general
mechanismhas been suggested to involve the temporal integration
and comparison of the outputs of different pools of sensory neu-
rons in order to compute a decision variable (Heekeren, Marrett,
Bandettini, & Ungerleider, 2004). This temporal integration might
be performed in one of several regions such as the dorsolateral pre-
frontal cortex (dlPFC) (Heekeren et al., 2004; Kim& Shadlen, 1999),
lateral intraparietal area (LIP) (Shadlen & Newsome, 2001), supe-
rior colliculus (SC) (Horwitz & Newsome, 1999), frontal eye fields
(FEF) (Schall, 2002; Schall & Thompson, 1999; Thompson, Hanes,
Bichot, & Schall, 1996) or intraparietal sulcus (IPS) (Colby & Gold-
berg, 1999), which all cooperate in order to translate the accumu-
lated evidence into an action (Heekeren, Marrett, & Ungerleider,
2008; Rorie & Newsome, 2005). Neuronal activity in integrator ar-
eas gradually increases and then remains elevated until a response
is given, with the rate of increase being slower during more diffi-
cult trials. A successful approach to explaining these kinds of neu-
rophysiological data has been through themeans of drift–diffusion
or race models (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006;
Schall & Thompson, 1999; Smith & Ratcliff, 2004), in which the
noisy sensory information is integrated over time until a decision
threshold is reached.

Here we present a large-scale model of a hierarchical spiking
neural network (SNN) that integrates a low-level memory encod-
ing mechanism with a higher-level decision process to perform a
visual classification task in real-time. Themodel consists of Izhike-
vich neurons and conductance-based synapses for realistic approx-
imation of neuronal dynamics (Dayan & Abbott, 2001; Izhikevich,
2003; Izhikevich, Gally, & Edelman, 2004), a STDP synaptic learn-
ing rule with additional synaptic dynamics for memory encoding
(Brader et al., 2007), and an accumulator model for memory re-
trieval and categorization (Smith & Ratcliff, 2004). Grayscale in-
put images were fed through a feed-forward network consisting
of V1 and V2, which then projected to a layer of downstream clas-
sifier neurons through plastic synapses that implement the STDP-
like learning rule mentioned above. Population responses of these
classifier neurons were then integrated over time to make a per-
ceptual decision about the presented stimulus. The full network,
which comprised 71,026 neurons and approximately 133 million
synapses, ran in real-time on a single off-the-shelf graphics pro-
cessing unit (GPU).
In order to evaluate the feasibility of our model, we applied it
to the extensively studied MNIST database of handwritten digits
(LeCun et al., 1998). Due to the large variability within a given class
of digits and a high level of correlation between members of dif-
ferent classes, the database provides stimuli whose categorization
might span a wide range of difficulty levels, and as such is well-
suited as a first benchmark for our model. However, it should be
noted that MNIST does not pose many of the challenges of biolog-
ical vision, such as distractors, occluders or translation invariance.
Moreover, all the images are static and isolated in their receptive
field. The network achieved 92% correct classifications, which is
comparable to other SNN approaches (Brader et al., 2007; Querlioz,
Bichler, & Gamrat, 2011) and simple machine learning algorithms
(such as linear classifiers, k-NearestNeighbor classifiers and simple
artificial neural networks LeCun et al., 1998), but not to state-of-
the-art models whose performance is close to 99.8% (Ciresan et al.,
2011; Niu & Suen, 2012).

Additionally, our network produces reaction time (RT) distri-
butions that are comparable to the behavioral RT distributions re-
ported in psychophysical experiments. For example, we show that
when the network makes an error, its RT is significantly slower
than when making a correct class prediction; and that RTs do not
decrease when the target stimulus has become familiar, which has
also been observed in a rapid categorization study (Fabre-Thorpe,
Richard, & Thorpe, 1998).

Although the present model does not reach the performance of
specialized classification systems (Ciresan et al., 2011; Niu & Suen,
2012), our model represents a first step towards the construction
of a general-purpose neurobiologically inspired model of visual
recognition and perceptual decision-making. The model includes
many neurobiologically inspired details not found in the algo-
rithms described above. The present network was constructed on
a publicly available SNN simulator that uses design principles, data
structures, and process flows that are in compliance with general-
purpose neuromorphic computer chips, and that allows for real-
time execution on off-the-shelf GPUs (Richert, Nageswaran, Dutt,
& Krichmar, 2011); its neuronmodel, synapsemodel, and address-
event representation (AER) are compatible with recent neuromor-
phic hardware (Srinivasa & Cruz-Albrecht, 2012). Because of the
scalability of our approach, the current model can readily be ex-
tended to an efficient neuromorphic implementation that sup-
ports the simulation of more generalized object recognition and
decision-making regions found in the brain. Ultimately, under-
standing the neuralmechanisms thatmediate perceptual decision-
making based on sensory evidence will further our understanding
of how the brain is able to make more complex decisions we en-
counter in everyday life (Lieberman, 2007), and could shed light on
phenomena like the misperception of objects in neuropsychiatric
disorders such as schizophrenia (Persaud & Cutting, 1991; Sum-
merfield, Egner, Mangels, & Hirsch, 2006).

2. Methods

We performed all simulations in a large-scale SNN simulator
which allows the execution on both generic x86 central processing
units (CPUs) and standard off-the-shelf GPUs (Richert et al., 2011).
The simulator provides a PyNN-like environment (PyNN is a com-
mon programming interface developed by the neuronal simula-
tion community) in C/C++ and is publicly available at http://www.
socsci.uci.edu/∼jkrichma/Richert-FrontNeuroinf-SourceCode.zip.
The simulator’s API allows for details and parameters to be speci-
fied at the synapse, neuron, and network levels. In our experiments
we used an Intel Xeon X5675 CPU operating at 3.07 GHz and a sin-
gle NVIDIA Tesla M2090 GPU card.

All parameter values can be found in Table 1.

http://www.socsci.uci.edu/~jkrichma/Richert-FrontNeuroinf-SourceCode.zip
http://www.socsci.uci.edu/~jkrichma/Richert-FrontNeuroinf-SourceCode.zip
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http://www.socsci.uci.edu/~jkrichma/Richert-FrontNeuroinf-SourceCode.zip
http://www.socsci.uci.edu/~jkrichma/Richert-FrontNeuroinf-SourceCode.zip
http://www.socsci.uci.edu/~jkrichma/Richert-FrontNeuroinf-SourceCode.zip
http://www.socsci.uci.edu/~jkrichma/Richert-FrontNeuroinf-SourceCode.zip
http://www.socsci.uci.edu/~jkrichma/Richert-FrontNeuroinf-SourceCode.zip
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Table 1
All parameter values used in our simulations.

Simulation parameters:

tstim Stimulation period 500 ms
tdelay Delay period 1000 ms
ntrain Total number of training patterns 10/100/1000/2000
ntest Total number of test patterns 1000
ncycles Number of training cycles 200/20/2/1

Single-cell parameters:

Vcutoff Spike cutoff +30
Vreset Reset potential RS/FS −65
θV Voltage threshold for X up-/down-regulations −62.5

Network parameters:

Ninp # of spike generators in the input layer 65,856
Ninp,i # of neurons in the input inhibitory layer 784
Norient # of neurons in the orientation layer 3136
Norient,i # of neurons in the orientation inhibitory layer 800
Ndec # of neurons in the decision layer 150
Ndec,i # of neurons in the decision inhibitory layer 150
Nteach # of spike generators in the teacher population 150

Synaptic parameters:

w+plastic Potentiated synaptic efficacy (binary synapse) 0.002
w−plastic Depressed synaptic efficacy (binary synapse) 0
τAMPA Time constant (decay) for AMPA channels 5 ms
τNMDA Time constant (decay) for NMDA channels 150 ms
τGABAa Time constant (decay) for GABAa channels 6 ms
τGABAb Time constant (decay) for GABAb channels 150 ms

Synaptic dynamics:

θX Threshold for synaptic transition 0.5
α Upwards drift rate (towards one) 0.1 s−1

β Downwards drift rate (towards zero) 0.1 s−1
γ Amplitude of X upwards jump 0.1
δ Amplitude of X downwards jump 0.1

Calcium variable:

JC Amplitude of Calcium up-regulation 3.4
τC Calcium decay time constant 60 ms
θ l
up Lower Ca-bound for up-regulation of X 3

θh
up Upper Ca-bound for up-regulation of X 12

θ l
down Lower Ca-bound for down-regulation of X 3

θh
down Lower Ca-bound for down-regulation of X 4

2.1. Model specifications

Spiking neurons in the network were modeled using the four
parameter Izhikevich model (Izhikevich, 2003), which aims to re-
duceHodgkin–Huxley-typeneuronalmodels to a two-dimensional
system of ordinary differential equations,

dV (t)
dt
= 0.04V 2(t)+ 5V (t)+ 140− U(t)+ Isyn(t) (1)

dU(t)
dt
= a (bV (t)− U(t)) , (2)

where (1) describes themembrane potential V for a given external
current Isyn, (2) describes a recovery variable U , the parameter a is
the rate constant of the recovery variable, and the parameter b de-
scribes the sensitivity of the recovery variable to the subthreshold
fluctuations of the membrane potential. All parameters in (1) and
(2) are dimensionless; however, the right-hand side of (1) is in a
form so that themembrane potential V hasmV scale and the time t
hasms scale (Izhikevich, 2003). The Izhikevichmodel iswell-suited
for large-scale simulations, because it is computationally inexpen-
sive yet capable of spiking, bursting, and being either an integrator
or a resonator (Izhikevich, 2004, 2007a).

In contrast to other simple models such as the leaky integrate-
and-fire (LIF) neuron, the Izhikevich neuron is able to generate the
upstroke of the spike itself. Thus the voltage reset occurs not at the
threshold, but at the peak (Vcutoff = +30), of the spike. The action
potential downstroke is modeled using an instantaneous reset of
themembrane potential whenever V reaches the spike cutoff, plus
a stepping of the recovery variable:

V (V > Vcutoff) = c and U (V > Vcutoff) = U + d. (3)

The inclusion of U in the model allows for the simulation of typical
spike patterns observed in biological neurons. The four parameters
a, b, c , and d can be set to simulate different types of neurons.
All excitatory neurons were regular-spiking (RS) neurons (a =
0.02, b = 0.2, c = −65, d = 8), and all inhibitory neurons were
fast-spiking (FS) neurons (a = 0.1, b = 0.2, c = −65, d = 2)
(Izhikevich, 2003, 2004).

Synaptic conductances were modeled as dynamic synaptic
channels with exponential decay:

dgr(t)
dt
= −

1
τr

gr(t)+ w


i

δ (t − ti) (4)

where δ is the Dirac delta, the sum is over all presynaptic spikes ar-
riving at times ti, w is the weight of that synapse, τr is its time con-
stant, and the subscript r denotes the receptor type; that is, AMPA
(fast decay), NMDA (slow decay and voltage-dependent), GABAa
(fast decay), or GABAb (slow decay). A spike arriving at a synapse
that is postsynaptically connected to an excitatory (inhibitory)
neuron increases both gAMPA and gNMDA (gGABAa and gGABAb ). In our
simulations we set the time constants for the decay of the conduc-
tances to τAMPA = 5 ms, τNMDA = 150 ms, τGABAa = 6 ms, and
τGABAb = 150 ms (Dayan & Abbott, 2001; Izhikevich et al., 2004).
Rise time of these conductances was modeled as instantaneous,
which is a reasonable assumption in the case of AMPA, NMDA, and
GABAa (Dayan & Abbott, 2001), but a simplification in the case of
GABAb, which has a rise time on the order of 10 ms (Koch, 1999).

Then the total synaptic current Isyn in (1) for each neuron is
given by:

Isyn = −gAMPA (V − 0)

−gNMDA

 V+80
60

2
1+

 V+80
60

2 (V − 0)

−gGABAa (V + 70)
−gGABAb (V + 90) ,

(5)

where V is the membrane potential of the neuron, and the sub-
script indicates the receptor type. This equation is equal to the one
described in Izhikevich et al. (2004).

2.2. Synaptic dynamics

The model of synaptic plasticity used in our study was previ-
ously described in Brader et al. (2007), henceforth referred to as
the original model implementation.

We justify our choice by the fact that the model (i) is among
the first STDP-like learning rules shown to be able to classify com-
plex patterns (Brader et al., 2007), that it (ii) reproduces a series of
empirical observations that the classic STDP cannot (Brader et al.,
2007; Graupner & Brunel, 2012; Sjöström et al., 2001), and that it
(iii) is well-suited for neuromorphic and large-scale implementa-
tions (Brader et al., 2007; Indiveri & Fusi, 2007; Mitra, Fusi, & In-
diveri, 2009). However, it is certainly not the only available model
thatmeets these criteria, and it would be interesting to compare its
performance to other models of spike-driven synaptic plasticity.

To the best of our knowledge, our implementation is the first
to study this plasticity rule in the framework of Izhikevich spik-
ing neurons and conductance-based synapses. In this section, we
reproduce some of the plots from the original model implementa-
tion in order to identify any influence this change of model might
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have on the tuning properties of the plasticity rule. It was our in-
tention to stay as close to the original model as possible in order to
verify the correctness of our implementation. However, we have
not systematically explored the parameter space, and it is possi-
ble that other sets of parameter values exist that would be equally
appropriate for a given learning task or model application.

The present synaptic plasticity rule differs from the basic STDP
model in that its update rule does not depend on the precise tim-
ing between pre and postsynaptic spikes, but is rather governed by
(i) the postsynaptic depolarization at the time of a presynaptic
spike and (ii) an auxiliary variable that integrates the postsy-
naptic action potentials. The model incorporates these two vari-
ables to account for experimental findings, for example, that the
postsynaptic neuron needs to be sufficiently depolarized for long-
term potentiation (LTP) to occur, and that LTP dominates long-
term depression (LTD), independent of relative spike timing, when
both pre and postsynaptic neurons fire at elevated frequencies
(Sjöström et al., 2001). The auxiliary variable implements a regu-
latory mechanism that suppresses all synaptic modifications if the
firing rate of the postsynaptic neuron is either too low or too high.
A natural candidate for such a variable would be an internal Cal-
cium concentration (henceforth denoted as C(t)), as it is assumed
that a relatively slow variable acting on a timescale on the order
of 100 ms is measuring the postsynaptic mean firing rate (Brader
et al., 2007). The Calcium variable was implemented as

dC(t)
dt
= −

1
τC

C(t)+ JC


i

δ(t − ti), (6)

where δ is the Kronecker delta, and the sum is over all postsynaptic
spikes arriving at times ti. JC is the contribution of a single postsy-
naptic spike, and τC is the time constant.

Fig. 1 shows the empirical probability distribution (relative fre-
quency) over Calcium concentrations for different values of post-
synaptic activity (τC = 60 ms and JC = 3.4). Here, a single neuron
at rest (V (0) = −65 mV, C(0) = 0) was stimulated for 500 ms
with Poisson spike trains of a given mean firing rate. Each curve is
the empirical probability distribution based on the observed C(t)
in 105 repetitions of this protocol. The induced mean postsynap-
tic firing rate is indicated in the plot legend. For low mean activ-
ity (fmean < 20 Hz) the shape of the distribution is dominated by
the exponential decay in (6). As the activity increases, the distri-
bution is approximately Gaussian. The shaded regions correspond
to regions where LTP transitions (red) and LTD transitions (yellow)
are possible, as explained below. Calcium concentration falling in
a shaded region will co-determine how likely LTP and LTD transi-
tions are at that point, as will be explained in the next paragraph.
The value for JC was chosen such that the shape of the Calcium dis-
tribution approximated the one reported in the original model im-
plementation (see Fig. 2(a) of Brader et al., 2007).

The plastic synapses are modeled with a hidden variable X(t)
that is confined between values zero and one. If the hidden variable
has a value above a certain threshold θX , it drifts towards one (po-
tentiated state); otherwise it drifts towards zero (depressed state)
(Fusi, Annunziato, Badoni, Salamon, & Amit, 2000). The state of a
synapse can be altered only if a series of modifications is made to
thehidden variable. In turn, amodification to thehidden variable (a
‘‘jump’’) can only be made upon the arrival of a presynaptic spike,
given that the following conditions on the postsynaptic membrane
potential and on the postsynaptic Calcium are met:

X ← X + γ if V (tpre) > θV and θ l
up < C(tpre) < θh

up

X ← X − δ if V (tpre) ≤ θV and θ l
down < C(tpre) < θh

down,
(7)

where tpre is the time of an arriving presynaptic spike, θV is a
threshold on the postsynaptic membrane potential, and the pa-
rameters γ and δ correspond to the parameters a and b in the orig-
inalmodel, respectively. Up-jumps are only allowed in the Calcium
Fig. 1. Empirical probability distribution (relative frequency) of Calcium concen-
tration (arbitrary units) as a function ofmean postsynaptic activity for different val-
ues of postsynaptic activity (JC = 3.4 and τC = 60ms). For lowpostsynaptic activity
(f < 20 Hz) the shape of the distribution is dominated by the exponential decay.
As presynaptic activity increases, the distribution is approximately Gaussian. Ver-
tical dashed lines are thresholds on C(t) which define LTP- (red) and LTD-relevant
(yellow) regimes, in which X up- and down-jumps are allowed (see (7)). Note that
these two regimes overlap (orange). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

interval

θ l
up, θ

h
up


, which corresponds to the red-shaded region (la-

beled ‘‘LTP’’) in Fig. 1. Analogously, down-jumps are only allowed
in the interval (θ l

down, θ
h
down), which corresponds to the yellow-

shaded region (labeled ‘‘LTD’’) in Fig. 1. Because in our case θ l
down is

equal to θ l
up, the two regions overlap (indicated in orange), which

is in agreement with the original model implementation. Note that
in this region both up- and down-jumps are possible, depending
on the relative position of V (tpre) to θV , as explained next. Refer to
Table 1 for the exact parameter values.

Jumps and state transitions are related as follows. In order to
make an up-jump of magnitude γ the postsynaptic membrane po-
tential needs to be sufficiently depolarized (V (tpre) > θV ) and the
postsynaptic neuron must have had an elevated mean firing rate
in the recent past, such that θ l

up < C(tpre) < θh
up. The hidden vari-

able may eventually cross the threshold θX through an accumula-
tion of up-jumps. Then an LTP transition is defined as the event in
whichX crosses θX frombelow to above. Analogously, down-jumps
of magnitude δ are allowed only if the postsynaptic membrane po-
tential is hyperpolarized (V (tpre) ≤ θV ) and only if the postsynap-
tic neuron has had a relatively low firing rate in the recent past
(θ l

down < C(tpre) < θh
down); and the event in which X crosses θX

from above to below is called an LTD transition.
As mentioned above, in the absence of stimulation the internal

synaptic variable drifts towards values zero or one (intrinsically
stable fixed points) according to

dX
dt
= α if X > θX

dX
dt
= −β if X ≤ θX

(8)

where θX is the transition threshold. The actual weight w of the
synapse, which is being integrated over time according to (4), is
different from X(t): At each time step X(t) is compared to θX , and
the weight w is set to w+plastic = 0.002 whenever X(t) > θX , and it
is set to w−plastic = 0 whenever X(t) ≤ θX . Refer to Morrison et al.
(2008) for a discussion on the biological evidence for and against
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A1 B1

A2 B2

A3 B3

A4 B4

Fig. 2. Illustration of the stochastic nature of synaptic modifications. In two sample runs A and B, a single synapse was both pre and postsynaptically connected to a spike
generator that fired at amean rate of 50Hz. The protocol of the synaptic learning rulewas executed for 500ms. Panels A1–4 illustrate a sample run forwhich the accumulation
of jumps caused X to cross the threshold θX (horizontal dashed line in Panel A2), that is, an LTP transition. Upon a presynaptic spike (Panel A1) the postsynaptic membrane
potential V (Panel A3) and the Calcium variable C (Panel A4) are read out. If V exceeded the threshold θV (horizontal dashed line in Panel A3) and C fell within the LTP-
relevant region, an up-jump in X was registered (Panel A2; see (7)). In the absence of stimulation X drifted towards one of the two stable states (see (8)). In another sample
run (Panels B1–4) no LTP transition occurred. Analogous to Fig. 1, shaded regions indicate where up-jumps and LTP (red) or down-jumps and LTD (yellow) are possible. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
binary synapses. The amplitude of the weight w+plastic should be
set such that several LTP transitions are required to affect the
postsynaptic firing rate. Other than that the model is fairly robust
against the amplitude changes of w+plastic. For a thorough analysis
of the stability of the model with respect to parameter variations
please refer to Section 5.7 in Brader et al. (2007).

Fig. 2 illustrates the stochastic nature of a synapticmodification.
In two sample runs A and B, a single synapse was both presynapti-
cally and postsynaptically connected to a Poisson spike generator
which fired at a mean rate of fpre = fpost = 50 Hz. The update
protocol was executed for tstim = 500 ms. Panels A1–4 illustrate a
sample run for which the accumulation of jumps caused X to cross
the threshold θX (horizontal dashed line in Panel A2), that is, an
LTP transition. In another sample run under the same conditions
(B1–4) no LTP transition occurred. Analogous to Fig. 1, shaded re-
gions indicate where up-jumps and LTP (red) or down-jumps and
LTD (yellow) are possible.

If presynaptic spikes arrive at random times, then consolida-
tion is activated with some probability (Brader et al., 2007; Fusi
et al., 2000). Thus the stochastic nature of a synaptic transition
arises from the Poisson statistics of the input signal, not from the
update protocol itself (which is in fact deterministic). Fig. 3 plots
the empirical probability of an LTP transition (Panel A) and of an
LTD transition (Panel B) for a single synapse as a function of mean
postsynaptic activity. The protocol was the same as in Fig. 2, but
the mean firing rates were varied between 0 Hz and 100 Hz. The
probabilities of LTP and LTD transitions shown in Fig. 3 roughly re-
produced the distributions reported in Fig. 2(b)–(d) of the original
model implementation. In Panel A, the synapse is initialized with
X(0) = 0, then stimulated for tstim = 500 ms. If X(tstim) > θX ,
an LTP transition is registered. Analogously in Panel B, the synapse
is initialized with X(0) = 1, and an LTD transition is registered if
X (tstim) < θX . Every data point is the mean value of n = 105 tri-
als, and the vertical bars are the standard error. The parameter val-
ues suggested in the original model implementation qualitatively
reproduced the shape of their reported distributions, but the peak
probabilitieswere significantly lower.We thus set θV = −62.5mV
and gradually reduced the drift rates α and β described in (8) until
the peak probabilities roughly matched the original model imple-
mentation. Differences in peak values are probably due to differ-
ences in the subthreshold dynamics of the two employed neuron
models. For amore elaborate discussion of the implementation dif-
ferences refer to Section 4.1 below.

The peak LTP transition probability is observed when both
pre and postsynaptic neurons fire at approximately 50 Hz. The
probability drops off above 50 Hz, because it is increasingly less
likely that C(t) falls in the LTP-relevant regime. This regulatory
mechanism is used as a stop-learning condition as follows. If the
frequency of the postsynaptic neuron is too high – or for that
matter, too low – no long-term modification should be induced.
Below 50 Hz the constraint on the postsynaptic membrane poten-
tial plays an increasingly important role: at low frequencies V (t) is
likely to fluctuate near the resting potential, which does not exceed
θV , and thus favors LTD (peak probability near 20 Hz).

In the case of fpre = 50 Hz, the LTP and LTD transition
probabilities intersect at roughly 30 Hz. This is an important
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Fig. 3. LTP (left) and LTD (right) transition probabilities. The transition probability distribution of a single synapse is plotted as a function of the mean output activity for
different values of input activity. For the left panel, a single synapse was initialized with X (0) = 0, and then repeatedly stimulated (n = 105 trials) for tstim = 500 ms.
If X (tstim) > θX an LTP transition was registered. Analogously for LTD, the synapse was initialized with X(0) = 1, and an LTD transition was registered if X (tstim) < θX .
Vertical bars are the standard error.
Fig. 4. Network architecture. The network consisted of 71,026 neurons (small circles) organized in four layers (dotted boxes), and approximately 133 million synapses
(denoted by arrows; triangles: excitatory synapses, filled circles: inhibitory synapses). MNIST grayscale images (input layer) were fed through a feed-forward network
consisting of V1 and V2, which then projected to a downstream population of decision neurons (output layer).
characteristic of the learning mechanism, as it implies that post-
synaptic firing rates above 30 Hz will most likely induce LTP tran-
sitions, while rates below that value will most likely induce LTD
transitions. Also, it accounts for the fact that LTP always dominates
LTD when both pre and postsynaptic neurons fire at elevated fre-
quencies (Sjöström et al., 2001).

The memory span is given by the learning rate (or the probabil-
ity of a synaptic transition), which can be adjusted by changing the
parametersα, β, γ , and δ in (7)–(8). The learning rate should be set
sufficiently low in order to allow gradual learning (French, 1999).
The challenge is tomake the learning rule simultaneously sensitive
to, but not radically disrupted by, new information (the so-called
‘‘stability–plasticity’’ dilemma) (French, 1999; Grossberg, 1980). In
the here employed model, presynaptic activity acts as a trigger for
synaptic modifications. Low presynaptic activity significantly re-
duces the probability of a synaptic transition, whichmakes the for-
mation of a memory robust to disruptions by spontaneous activity
(in the case of fpre = 50 Hz we observe PrLTP


fpost < 5 Hz


< 10−5

and PrLTD(fpost < 5Hz) ∼= 10−4).Moreover, it theoretically allows a
memory to be preserved indefinitely in the absence of stimulation,
as PrLTP

fpost = 0


= PrLTD


fpost = 0


= 0. On the other hand, new

stimuli can be learned only gradually after experiencing them sev-
eral times (also known as ‘‘interleaved learning’’) (French, 1999).

2.3. The MNIST database

To evaluate the feasibility of our model, we conducted exper-
iments on the extensively studied MNIST dataset of handwritten
digits (LeCun et al., 1998). The dataset contains a total of 70,000
grayscale images,which are size-normalized to fit in a 20×20 pixel
box and centered (by center of mass) in 28× 28 fields. The MNIST
dataset is freely available at http://yann.lecun.com/exdb/mnist/,
which also lists a large number of classification results achieved
by more conventional machine learning algorithms.

2.4. Network architecture

The network architecture is shown in Fig. 4. The network con-
sisted of 71,026 neurons (small circles) organized in four layers
(dotted boxes), and approximately 133 million synapses (denoted

http://yann.lecun.com/exdb/mnist/
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by arrows; triangles: excitatory synapses, filled circles: inhibitory
synapses). MNIST grayscale images (input layer) were fed through
a feed-forward network consisting of V1 and V2, which then pro-
jected to a downstream population of decision neurons (output
layer). V1 and V2 populations were previously implemented and
tested in a Compute Unified Device Architecture (CUDA) environ-
ment (Richert et al., 2011). We thus extended the existing imple-
mentation to train a layer of downstream decision neurons on V2
representations of the MNIST database using the synaptic plastic-
ity rule described above in combination with an excitatory teacher
signal (see below). Parameter values such as population size, con-
nection probability, and connection strength are listed in Table 1.

V1 simple and complex cell responses were constructed by us-
ing the first stage of the (rate-based) motion energy model (Si-
moncelli & Heeger, 1998). In this model, a simulated V1 simple
cell computes an inner product of the image contrast with one
of 28 space–time oriented receptive fields (third derivatives of a
Gaussian, which are very similar to a Gabor filter), which is then
half-rectified, squared, and normalized within a Gaussian enve-
lope (Gaussian half-width σ = 3.2 pixels). V1 complex cell re-
sponses were computed as a weighted sum of simple cell afferents
that have the same space–time orientation and phase, but are dis-
tributed over a local spatial region (Gaussian half-width σ = 1.6
pixels). Please refer to Simoncelli and Heeger (1998) for a com-
plete model description and a justification of model parameters.
The 28 × 28 pixel images in the MNIST dataset were processed
at three different spatial scales (indicated by the three banks of
neuron populations in the V1 layer of Fig. 4) resulting in 84 filter
responses per pixel, where the first scale was equivalent to pro-
cessing at the original image resolution and each subsequent scale
reduced the resolution by a factor of

√
2. Filter responses were

then interpreted as the mean firing rates of Poisson spike trains
(fmax = 50 Hz, as will be explained in Section 2.5), and make up
the full V1 layer of 65,856 Poisson spike generators.

Simulated spiking neurons in V2 received input only from V1
complex cells that weremore selective to orientation thanmotion,
across all three spatial scales. V2 neurons preferentially responded
to one of four spatial orientations in 45° increments (horizontal
‘‘H’’, right-diagonal ‘‘RD’’, vertical ‘‘V’’, and left-diagonal ‘‘LD’’). The
orientation layer thus consisted of four pools of 28 × 28 neurons
(which correspond to the four pools illustrated in Fig. 4), or a to-
tal of 3136 neurons. The neurons were broadly tuned such that,
for example, an LD-tuned neuron responded strongest to LD stim-
uli but to a lesser degree also to V and H stimuli. Inhibitory neu-
rons in the orientation layer pooled over the activity of neurons in
a Gaussian neighborhood selective to a specific orientation (Gaus-
sian half-width σ = 6.4 pixels) and sent inhibitory projections
to neurons selective to the anti-preferred direction. For more in-
formation about the implementation details please refer to Richert
et al. (2011).

The V2 orientation layer was fully connected to a decision
layer of 150 excitatory neurons, responsible for integrating the
sensory information over time. A good candidate for performing
this integration in humans might be dlPFC, as this region of
the brain is believed to have general decision-making functions,
independent of stimulus and response modalities (Heekeren et al.,
2004). In the macaque several regions have been found to have
integrator functions, such as dlPFC (Kim & Shadlen, 1999), LIP
(Shadlen & Newsome, 2001), or SC (Horwitz & Newsome, 1999).
Future iterations of our model should be extended to include
higher-order visual areas, such as areas in the inferotemporal gyrus
(Shum et al., 2013), which would then project to an integrator area
such as the dlPFC.

In addition to these plastic connections, divisive normalization
was used to account for large variations in V2 layer activity. This
normalizationwas implemented as an inhibitory population of 800
neurons that was uniformly connected to all neurons in both the
orientation and the decision layer (20% connection probability).
The weight of these projections was set such that the inhibitory
population had a non-zero firing rate for all presented input
patterns.

Neurons in the decision layer were equally divided into ten
pools of 15 neurons each (see output layer of Fig. 4). Each neuron
sent excitatory projections to other neurons in the same pool,
and inhibitory projections to all other pools. Upon each stimulus
presentation in the training phase, one of the ten pools received
an additional excitatory signal from a teacher population of 15
Poisson spike generators that drove neurons towards a firing rate
of 50 Hz, at which learning should occur. The signal was sent to
the jth pool whenever a stimulus of class jwas presented (e.g., the
first decision pool received a teaching signal whenever a zero was
presented to the network). As a result of this specific connectivity,
each pool became selective after training to one class of input
stimuli from the MNIST dataset; that is, one of the ten digits.

Inhibitory populations were approximately four times smaller
than their excitatory counterpart (784 inhibitory versus 3136 ex-
citatory neurons in the orientation layer; 800 versus 3136 neurons
in the decision layer), which is thought to be the ratio of excitatory
to inhibitory neurons found in themammalian cortex (Braitenberg
& Schuz, 1998).

2.5. Simulation procedure

The simulation consisted of the numerical integration of the
equations for the Izhikevich neuronmodel (1)–(3), for the synaptic
conductances (4)–(5), and for the variables involved in the synap-
tic learning rule (6)–(8) using the forward-Euler method. Whereas
the basic integration stepwas 1ms for (4)–(8), the integration step
was set to 0.5 ms for (1)–(3) in order to avoid numerical instabili-
ties associated with fast spiking activity (Izhikevich et al., 2004).
Although this approach yields adequate accuracy in our simula-
tions, other scenariosmight exist where restricting the spike times
to multiples of the integration step will lead to significant integra-
tion errors. These errors may be avoided by interpolating the exact
spike times (Morrison, Straube, Plesser, & Diesmann, 2007), or by
using a more accurate numerical integration method (Stewart &
Bair, 2009).

The simulation comprised three stages: a pre-processing stage
in which the MNIST dataset was converted into orientation
responses, a training phase, and a testing phase.

The pre-processing stage was performed only once initially.
Our implementation of the motion energy model directly takes
grayscale movies as an input, and returns the total of 84 space–
time-oriented filter responses per pixel as an output (28 filters at
three spatial scales). Because the motion energy model expects
movies rather than still images as an input, we presented each
MNIST image for 100 frames and averaged the response of each cell
in the V2 orientation layer to get a quasi-steady-state response for
each image. In order to make these responses compatible with the
protocol of the synaptic plasticity rule, we linearly mapped the re-
sponse magnitudes onto the interval [fmin = 2 Hz, fmax = 50 Hz].
This was to ensure that all firing rates in the orientation layer
stayedwithin reasonable boundaries, that each pattern had at least
one element with firing rate fmax, and that the minimum response
was a non-zero ‘‘spontaneous’’ firing rate fmin. The upper bound
was set to 50 Hz because this is the mean rate at which it is most
likely to get LTP (see Fig. 3). However, this procedure is merely a
technical measure of precaution, as the motion energy model is
perfectly capable of producing V1 (and V2) responses within a few
milliseconds. The average orientation layer responses were con-
verted to Poisson spike trains. These activity patterns were taken
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Fig. 5. Some MNIST exemplars (input layer) and their corresponding orientation-selective responses (orientation layer). The orientation layer consisted of four pools of
28×28 neurons responding to one of four spatial orientations (horizontal ‘‘H’’, right-diagonal ‘‘RD’’, vertical ‘‘V’’, and left-diagonal ‘‘LD’’). Firing rates are color-coded ranging
from 2 Hz (blue) to 50 Hz (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
randomly from the dataset, under the one restriction that the train-
ing and testing sets be mutually exclusive.

Fig. 5 illustrates some MNIST exemplars and their correspond-
ing orientation-selective responses. Firing rates are color-coded
ranging from 2 Hz (blue) to 50 Hz (red).

At the beginning of an experiment, all synaptic internal vari-
ables and plastic weights were set to zero. In order to avoid syn-
chronous bursting of network activity upon the first stimulus
presentation, we uniformly distributed the membrane potential of
all excitatory neurons between−95mV and−65mV, and the Cal-
cium variable between zero and three.

During training, a total number of ntrain activity patterns belong-
ing to ten different stimulus classes (the digits zero through nine)
were presented sequentially to the output layer for ncycles training
cycles. A variety of values were tested for these parameters, all of
which can be found in Table 1. Blocks of ten stimulus presenta-
tions or trials were set up such that in each block the ten stimuli
(one exemplar of each class) were presented in random order and
without repetition. This rather restrictive protocol was introduced
to ensure that, even for the relatively small training sets, after k
blocks all ten digits had been presented exactly k times. However,
it would be interesting to see whether this restriction can be re-
laxed to a more natural presentation order when dealing exclu-
sively with relatively large training sets.

In each trial, the stimulus was presented for a period of tstim =
500 ms, which is a common value in object recognition tasks
(Mongillo, Curti, Romani, & Amit, 2005; Rolls, 2012). However,
other values are possible, where longer stimulation periods tend
to slightly increase the likelihood of synaptic transitions (Brader
et al., 2007).

The teacher population sent an additional excitatory signal to
those output neurons that should be selective for the presented
stimulus. These connections were set such that at the beginning of
the training phase the output neuron pool fired at approximately
50 Hz, which is the firing rate that corresponds to the highest LTP
probability (compare Fig. 3). The synaptic learning rule would then
select a number of synapses for potentiation based on the activity
of their presynaptic and postsynaptic cells. As training progressed
an increasing number of synapses got potentiated, which caused
the firing rate of the decision neurons to rise. Recall that at firing
rates above 50 Hz the LTP transition rate drops off; because it is
increasingly less likely that C(t) falls in the LTP-relevant regime
(see Fig. 1). Thus in the second half of the training phase a synapse
potentiation got increasingly rare. We ended the training after a
total of 2000 stimulus presentations.

Every stimulus presentation was followed by a delay period
of tdelay = 1 s, in which all the input neurons fired at fmin =

2 Hz mean rate (in order to simulate spontaneous input activity),
and the teacher remained silent. In our model, the delay activity
in the decision layer started out to be zero at the beginning of
training, but as learning progressed activity tended to gradually
increase from 0 Hz at the beginning to roughly 10 Hz at the end
of training. Towards the end of the training phase, this activity
persisted throughout the entire delay period. Because the network
learns gradually, this activity is similar but not equivalent to the
network response that was evoked by the last presented stimulus.
Interestingly, similar selective delay activity has been observed
in inferotemporal, prefrontal, and entorhinal cortices in monkeys
when performing a delay-response task, and is believed to be
mediated by slow NMDA currents (Erickson & Desimone, 1999;
Nakamura & Kubota, 1995).

Following the training, the teacher signal was removed, and
the learning mechanism was turned off. The network activity was
then purely driven by the input activity and the learned weight
matrix. The training and testing setswere presented to thenetwork
(tstim = 500 ms, tdelay = 1 s) to evaluate the error rates.

For classification we adopted a computational framework from
a motion discrimination task, where the decision-making was
modeled as the integration of sensory evidence over time (Shadlen
& Newsome, 2001). In this model, each pool of output neurons
accumulates evidence for a particular stimulus class separately.
The first pool to emit 75 spikes (on average five spikes per neuron)
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wins the race, and thus signals a choice for that stimulus class.
The time it takes the first pool to reach the decision threshold is
termed the RT. Note that, the mutual inhibition of decision pools is
a fundamental modification of the conventional racemodel (Smith
& Ratcliff, 2004). For more information see Section 4.3.

Based on this rule, three different outcomes are possible:

(i) correctly classified: the correct stimulus pool of output neurons
wins the vote.

(ii) misclassified: an incorrect stimulus pool wins the vote.
(iii) non-classified (‘‘forced choice’’): if no decision was made after

the stimulation period of 500 ms, we forced the network to
make a choice by selecting the most active pool as the winner
of the vote.

Due to the stochastic nature of synaptic transitions it is possible
that the network performance changes significantly from run to
run. Thus, in order to get a robust performancemetric, we ran each
experiment 100-fold on randomly sampled patterns and report the
average result over all experimental runs.

3. Results

We addressed the question of how many training samples are
needed to allow good classification by varying the size of the train-
ing set between ten patterns (one per digit) and 2000 patterns (200
per digit). The testing set always consisted of 1000 patterns the
network had not seen before. We ran a total of four experiments,
where each experiment featured a set ofntrain training samples, and
each experiment was run 100 times. The number of training cycles
was adjusted such that overall 2000 stimuli were presented in the
training phase of each experimental run (e.g., if the training set had
ntrain = 100 training patterns, they were presented for ncycles = 20
training cycles, such that ntrain ∗ ncycles = 2000). The full network
ran in real-time on the GPU, and was roughly eight times slower
than real-time when run on the CPU.

The resulting misclassification rates are plotted in Fig. 6, where
each bar represents the mean misclassification rate in 100 runs of
the same experiment and the error bars are the standard deviation.
Whereas the training and testing set sizes were the same in each
experiment, the actual patternswere drawn randomly fromMNIST
in each run. If only ten training patterns (navy blue) were used,
the network was able to ‘‘memorize’’ them (achieve zero error)
in 98 out of 100 runs. Even 100 training patterns (cyan) could be
memorized in two out of 100 runs. However, a small training set
is clearly underrepresenting MNIST, which is reflected in the large
testing error.

It is worth noting that the network was able to achieve its
best testing error after a one-time experience of 2000 patterns
(maroon). Generally speaking, the network was able to generalize
best to new data if the training set was large. This was, however,
only true up to a certain point. In fact, the distributions of the
misclassification rate for training set sizes ntrain = 1000 (gold)
and ntrain = 2000 (maroon) were not significantly different (two-
sample t-test, p ∼= 0.75), indicating that these training sets were
equally representative of the data. Thus we did not study larger
training sets. However, other studies argued that MNIST is too
small for some classifiers to infer generalization properly, and thus
vastly increased the training set through a variety of distortion
techniques (Ciresan et al., 2011; Simard et al., 2003). Thus, it is
possible that applying similar techniques to our model would aid
the classification performance.

The results for the experiment with 2000 training and 1000
testing patterns are plotted again in Fig. 7 for further investigation.
On average, the network scored 91.88% and 91.64% correct clas-
sifications (green) on the training (Panel A) and testing set (Panel
B), respectively. Analogously, themisclassification rates (red) were
Fig. 6. Misclassification rate on the training (left) and testing set (right).
Data was collected from experiments with varying training set sizes and
1000 testing patterns (100 simulation runs each). As the training set size
increased, the generalization error (right panel) decreased. The distributions of the
misclassification rate for training set sizes 1000 and 2000 were not significantly
different (two-sample t-test, p ∼= 0.75).

7.66% and 8.24%, and the non-classification rates (blue) were 0.46%
and 0.12%. Similar performance on the training and testing sets in-
dicates that our model is unlikely to overfit the training data. The
relatively low non-classification rates (as compared to misclassifi-
cation rates) are due to thenetwork being able to reach thedecision
thresholdwithin 500ms even for stimuli that evoked relatively low
responses. This was necessary in order to simulate psychophysical
RT distributions (see Fig. 10). However, other thresholds may exist
that would allow formostmisclassifications to be turned into non-
classifications (as was done in Brader et al. (2007)). Even though
the network did not reach the decision threshold for 0.58% of all
patterns, the forced choice in these non-classified trials was cor-
rect 78% of the time. The best observed result in a single roundwas
95% correct classifications (observed in roughly 10% of all cross-
validation rounds, see Panel D). According to the Jacques–Bera test
of composite normality all distributions in Fig. 7 were approxi-
mately Gaussian, which indicates that the classification result is
robust, repeatable, and as such does not allow a significant frac-
tion of outliers. Error bars in Panels A and B indicate the standard
deviation. Misclassification rates are plotted again as a normalized
histogram (relative frequency) for the training set (Panel C) and for
the testing set (Panel D). Vertical dotted lines indicate the mean.

This result is comparable to other SNN models of similar com-
plexity, such as a memristor-based SNN that achieved 93.5% ac-
curacy on the full MNIST set (Querlioz et al., 2011), but is slightly
worse than the 96.5% accuracy reported in the original study
(Brader et al., 2007), which was achieved on 10,000 randomly se-
lected patterns (no information is given about the reproducibility
of this result). Needless to say, the average performance of our net-
work compares unfavorably with state-of-the-art machine learn-
ing methods (Ciresan et al., 2011; Niu & Suen, 2012; Simard et al.,
2003), of which a hybrid CNN-support vector machine (SVM) clas-
sifier was able to achieve an error rate of 0.19% (Niu & Suen, 2012).
Refer to Section 4.2 for amore exhaustive performance assessment.

The network made a range of different predictive errors, all of
which are shown in the confusion matrix in Fig. 8. In this grayscale
map, misclassifications are grouped according to the actual label
of the presented pattern (rows) and the class prediction (columns).
Number of occurrences are indicated on the right, and ranged from
zero (black) to 1200 (white). For example, the matrix element in
the lower left corner shows the number of occurrences where the
digit nine had been misclassified as a zero. Correct classifications
(which would lie on the diagonal) were not included in the plot.
The network most easily recognized the number one, followed by
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Fig. 7. Classification performance for 100 simulation runswith 2000 training and 1000 testing patterns. Classification rates are given for correctly classified samples (green),
misclassified samples (red), and non-classified samples (blue). Error bars indicate the standard deviation. The network scored 91.88% and 91.64% correct classifications on
the training (Panel A) and testing set (Panel B). Analogously, the misclassification rates were 7.66% and 8.24%, and the non-classification rates were 0.46% and 0.12%. Panels
C and D: normalized histogram of the misclassification rate on the training set (C) and testing set (D). Vertical dotted line indicate the mean. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Confusion matrix from training (left) and testing (right) for 100 simulation runs with 2000 training and 1000 testing patterns. The plot shows all misclassifications
grouped according to the actual label of the presented pattern (rows) and the class prediction (columns) in a grayscale map, where the number of occurrences ranges from
zero (black) to 1200 (white). For instance, the matrix element in the lower left corner shows the number of occurrences where the digit nine had been misclassified as a
zero. Correct classifications (which would lie on the diagonal) were not included in the plot. The most common error was mistaking other digits for the number one.
the number zero. Themost predictive errorsweremade on the dig-
its eight and nine. Not entirely unrelated, the network was prone
to mistaking other digits for a one, especially the number four
(‘‘4 → 1’’), seven (‘‘7 → 1’’) and eight (‘‘8 → 1’’). This particular
mistakewas usuallymade on narrowly drawn digits, whose spatial
frequency posed problems on the pre-processing filters (see Sec-
tion 4.4). Other frequently confused pairs were ‘‘8→ 0’’, ‘‘9→ 7’’,
‘‘3 → 5’’, and ‘‘3 → 8’’, which is not surprising as their pixel
representations are highly correlated. In contrast, other pairs were
never confused, such as ‘‘1→ 9’’, ‘‘6→ 7’’, and ‘‘6→ 9’’.

In order to find out which MNIST exemplars were the most
troublesome, we counted the number of errors the network made
on each pattern in the set, divided by the number of times a
given pattern had been presented to the network. The resulting
50 most often confused patterns are shown in Fig. 9 in decreasing
order from left to right and from top to bottom. Their actual and
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Fig. 9. The 50most often misclassified patterns in decreasing order from left to right and from top to bottom, collected in 100 simulation runs (2000 training patterns, 1000
testing patterns). Under each image the actual label and the most common class prediction is indicated as label→ prediction.
predicted labels are indicated below the image. From the pairs
mentioned above the most prevalent mistakes were to confuse a
seven or a ninewith a one (e.g., patterns A1, A4, and A9). This is not
surprising, as all three digits are very similar in shape. In addition,
the network often mistook digits that have a distinct circle-like
feature for a zero (e.g., patterns A5, A6, and A8). Other patterns
were of degraded quality (e.g., missing stroke in patterns D7 and
D8), or were at least ambiguous (e.g., pattern A3) making them
hard to categorize even for humans.

We tested if the network was faster at reaching a decision
when it correctly classified digits, as opposed to when it made an
error. Fig. 10 shows the histogram of the RT in training (Panel A)
and testing (Panel C), which are comparable to RT distributions
reported in Fig. 2 of Fabre-Thorpe et al. (1998). One might prefer
to explore the data from Panel A and Panel C in box plot format
(see Panel B and Panel D, respectively). RTs involved in a correct
decision and in a wrong decision are shown in green and red,
respectively. Vertical dashed lines indicate the median RT for
correct (green) and wrong (red) decisions. All distributions were
positively skewed, which is a direct consequence of the racemodel
(Smith & Ratcliff, 2004). The median response time of the network
for a correct decision was 289 ms on both the training and testing
set. For misclassifications the median response time was 321 ms
and 320 ms on the training and testing set, respectively. Overall
the shortest RT was 178 ms. Even though predictive errors took
longer than correct responses on average, the network still made
fast errors; a quality that cannot be reproducedby the conventional
race model (Smith & Ratcliff, 2004).

Using the Kolmogorov–Smirnov test we verified that the distri-
butions of RTs of correct and wrong decisions were significantly
different in both panels (α = 0.00167, p < 0.0001). However,
the RT distributions for the correct classification of either familiar
stimuli (the ones in the training set) or new stimuli (the ones in the
testing set), and analogously for misclassifications, were not (α =
0.00167, p < 0.005), which is in agreement with the behavioral
evidence from psychophysical experiments (Fabre-Thorpe et al.,
1998).

4. Discussion

Themain contributions of the present study are as follows. First,
we modified the original model (Brader et al., 2007) to be more
biologically plausible most notably by (i) implementing a SNN us-
ing Izhikevich spiking neurons and conductance-based synapses,
(ii) implementing the different dynamics seen in excitatory and
inhibitory neurons, (iii) incorporating a pre-processing stage that
approximates the spatiotemporal tuning properties of simple and
complex cells in the primary visual cortex, and (iv) modeling the
classification rule as a decision-making process based on the race
model. Second, the network achieved 92% correct classifications
in 100 rounds of random sub-sampling, which provides a conser-
vative and reliable performance metric, and is comparable to a
number of SNN and simple machine learning approaches. Third,
our network correctly predicts a number of properties related to
behavioral RTs reported in psychophysical experiments, namely
(i) the shape of these RT distributions, (ii) shortermean RTs for cor-
rect responses than for errors, (iii) similar RTs for both unfamiliar
and familiar stimuli, and (iv) RT values that are comparable to those
reported in a rapid categorization study. Overall we demonstrate
how a STDP-like learning rule can be utilized to store object infor-
mation in a SNN, and how a simple decision-making paradigm is
able to retrieve this memory in a way that allows categorization of
highly correlated patterns of neural activity. By using a SNN simu-
lator that supports large-scale instantiations and neurobiologically
plausible brain architectures (Richert et al., 2011), our model rep-
resents a first step towards the construction of a general-purpose
neurobiologically inspired model of visual object recognition and
perceptual decision-making.

4.1. Changes to the original model implementation

Table 2 lists all major changes made to the original model
implementation by Brader et al. (2007). The most prominent
differences are changes in the neuron and synapse model, in the
pre-processing stage, in the simulation procedure, in the decision
(classification) rule, and in the cross-validation. We will briefly
discuss each of these modifications.

Employing Izhikevich spiking neurons and conductance-based
synapses instead of leaky integrate and fire (LIF) neurons allows
for better approximation of the subthreshold dynamics of a neu-
ronal membrane potential while still being computationally ef-
ficient (Izhikevich, 2003). For example, the Izhikevich model is
able to capture the qualitative differences between the response
properties of excitatory (RS) and inhibitory (FS) neurons (e.g., the
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Fig. 10. Histogramand box plots of reaction times in the training (Panel A and C) and testing phase (Panel B andD). The reaction times for correct (green) andwrong decisions
(red) were collected in 100 simulation runs (2000 training patterns, 1000 testing patterns). Vertical dashed lines in Panel A and C are the median of each distribution. The
median response time of the network for a correct decision was 289 ms on both the training and testing set. For misclassifications the median response time was 321 ms
and 320 ms on the training and testing set, respectively. Overall the shortest RT was 178 ms. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
Table 2
Comparison between the original model and the current implementation.

Original modela Current implementation

Neuron model: Leaky I&F neurons with
a floor

Izhikevich spiking
neurons (RS & FS)

Synapse model: Current-based Conductance-based
Pre-processing: None/edge detectionb Spatial orientationc

Recognition layer: Full connectivity, no
competition

Full connectivity,
competition

Decision rule: Threshold on firing rate
(per neuron), majority
decision rule

Accumulator model
(group spiking)

# Plastic synapses: 784 4× 784 = 3136
# Classifier neurons: Nout

class = 15 Nout
class = 15

Stimulation period: tstim = 300 ms tstim = 500 ms
Delay period: Unspecified tdelay = 1 s
Drift rates: a = b = 1/0.35 s−1 a = b = 0.1 s−1
Calcium up-jump: JC = 1 JC = 3.4
# Simulation runs: 1 100
# Training patterns: 20,000 10/100/1000/2000
# Test patterns: 10,000 1000
a Brader et al. (2007).
b 8 orientations, binary responses, directional.
c 4 orientations, analog responses, no polarity.

firing rate of a FS neuron is a poor predictor of the strength of stim-
ulation) which the LIF model cannot (Izhikevich, 2004). Another
difference (and problem) is that the Izhikevich spiking neurons do
not have a constant instantaneous threshold potential; that is, a
constant level of postsynaptic depolarization above which an ac-
tion potential is very likely to be triggered (Izhikevich, 2007b). This
has direct implications on the learning rule under study, which re-
quires the membrane potential to be sufficiently depolarized in
order for an LTP transition to occur (compare (7)). In both the
original model and the present implementation this sufficiency
is defined as θV , a constant potential whose range of values is
bounded by the resting potential and the spiking threshold. Our
results indicate that adequate performance is possible with a con-
stant θV . However, a more exhaustive analysis of the subthreshold
path in the Izhikevich model might add to the understanding of
model limitations.

Conductance-based synapses allow for distinct temporal dy-
namics per synaptic channel, such as the nonlinear dependence of
NMDA currents on the membrane potential (see (5)). Slow NMDA
currents proved to be crucial especially to prevent the exces-
sive synaptic depression immediately following the removal of a
stimulus. Moreover, slow NMDA currents allowed for the genera-
tion of persisting stimulus-selective activity throughout the delay
period,whichmight be similar to activity observed in inferotempo-
ral, prefrontal, and entorhinal cortices in monkeys when perform-
ing a delay-response task (Erickson & Desimone, 1999; Nakamura
& Kubota, 1995). This phenomenon would be in agreement with
recent theories highlighting the importance of NMDA receptors in
the functioning of selective delay activity (Amit & Mongillo, 2003;
Mongillo et al., 2005).

The synaptic learning rule was studied before on a dataset that
had been pre-processed with binary edge filters (Amit & Mascaro,
2001; Brader et al., 2007). Two weaknesses of this transformation
were mentioned by the authors: first, the filters had to be very
coarsely tuned in order to model some degree of location invari-
ance, resulting in a tuning curve that is not bell-shaped but more
flat; and second, the filters were binary. Our approach overcomes
both limitations by modeling the spatiotemporal tuning of simple
and complex cells according to the V1 model of Simoncelli and
Heeger (1998). Additionally, the classification problem benefits
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from two other properties of the pre-processing transformation.
First, the set of all orientation responses of a certain digit shows
higher intraclass correlation than the set of all corresponding
grayscale images, which ismainly due to the spatial pooling of sim-
ple cell responses. And second, the transformation increases the
dimensionality of the input space from 784 to 3136 input features,
which in turn increases the capacity of the classification algorithm.

Another change was made to the way a stored memory is
retrieved from the system. In the original model implementation
a threshold on the output activity decided whether a neuron was
considered active or not, and amajority decision rule classified the
data (Brader et al., 2007). While this approach bears resemblance
to an ensemble of perceptron classifiers, it brings with it a set of
new problems. A minor issue is that a different threshold may be
required for each neuron in the ensemble. More importantly, in
order to retrieve a memory it is often necessary to discriminate
between very close synaptic currents, to a degree that may be
biologically implausible (Fusi & Senn, 2006). We resolve this issue
by introducing a decision variable, whose behavior is based on
the well-founded drift–diffusion model (Bogacz et al., 2006; Smith
& Ratcliff, 2004). In order to decide which stimulus is being
presented to the network, sensory evidence for each possible
choice is integrated separately over time, until a decision threshold
is reached. The decision is then to pick the alternative which ‘‘wins
the race’’, that is, which reaches the threshold first. This method is
in agreement with a number of studies that have identified small
populations of neurons in frontal cortical areas of monkeys and
humans which are not only predictive of the behavioral response
in a perceptual decision task, but whose behavior can be explained
by drift–diffusion or racemodels (Philiastides & Sajda, 2006; Schall
& Thompson, 1999; Shadlen & Newsome, 2001).

Other modifications include the adaptation of the stimulation
period to amore common interval of 500ms (Mongillo et al., 2005;
Rolls, 2012), and the introduction of a delay period. The latter
serves two purposes. First, as mentioned above it allows for the
generation of persistent selective delay activity. Second, it serves as
a regulatory mechanism to return the network activity to a ‘‘near-
resting’’ state: synaptic internal variables are guaranteed to drift
to one of their two stable states, thus consolidating the memory;
synaptic currents as well as the postsynaptic depolarization
rebound; and the Calcium variable is likely to return to values
around zero. Although the original model implementation has
demonstrated functionality of the synaptic learning rule in the
absence of a delay period, it remains to be shown how critical this
parameter is for the success of the model in more natural or less
controlled environments (e.g., when embodied on a robot).

All these changes arguably improve the neurobiological plausi-
bility of the model, while still allowing the network to perform the
classification task at hand.

4.2. Performance assessment

The network demonstrates robust classification performance
averaging 92% correct (with 95% as its best performance) classifi-
cations over 100 rounds of random sub-sampling. Employing this
sub-sampling technique is an effort to provide a relatively conser-
vative and reliable performancemetric. In contrast to a full (k-fold)
cross-validation procedure, our techniquewas shown to be asymp-
totically consistent; that is, an asymptotically consistent method
selects the best prediction model with probability one as sample
size n → ∞, which results in more pessimistic predictions of the
test data (Shao, 1993). In otherwords, the network is likely to score
even better in a full cross-validation procedure. An advantage of
random sub-sampling is that the size of the sub-samples does not
depend on the number of runs. A disadvantage of this method is
that some observations may never be selected in the validation
sub-samples, whereas others may be selected more than once.

Whereas this result is comparable to other SNNs of similar
complexity, such as a memristor-based SNN that achieved 93.5%
accuracy on the full test set (Querlioz et al., 2011), the introduction
of new components leads to slightly worse performance than the
96.5% accuracy reported in the original study (Brader et al., 2007).
It is possible that the classification performance could be improved
by choosing a different decision threshold or by further limiting the
allowed duration of a response. However, since errors happen over
a wide range of RT values (see Fig. 10), it is not straight-forward
to find suitable parameter values that bothmaximize performance
and reproduce the desired RT distributions. Thus more work is
needed in this direction.

Similar performance could be achieved using non-spiking neu-
ron models and neurobiologically plausible learning paradigms.
For example, Huerta and Nowotny demonstrated that a network
of McCulloch–Pitts neurons modeled after the insect olfactory sys-
tem was able to achieve 93% accuracy on MNIST using 50,000 hid-
den units and a reinforcement learning rule (Huerta & Nowotny,
2009). Amit and Mascaro achieved 94% accuracy on a downscaled,
pre-processed version of MNIST using perceptrons in an attractor
network with 200 attractor states (Amit & Mascaro, 2001). Note
that, the number of hidden units in the first study was an order of
magnitude larger than in our approach (50,000 hidden units ver-
sus 3136 V2 orientation-selective cells); and that the second study
reduced the dimensionality of the problem by classifying a 16×16
version of MNIST.

Not surprisingly, our network showed worse performance than
machine learning algorithms of higher representational power
(or ‘‘model complexity’’), such as deep-hierarchical CNNs (Ciresan
et al., 2011; LeCun et al., 1998; Simard et al., 2003) and a hybrid
CNN-SVM classifier (Niu & Suen, 2012). The latter achieved a best
error rate of 0.19%, outperforming all current CNN approaches as
well as the human recognition error, which they estimated to be
0.2%. Also, these studies vastly expanded the (with 60,000 samples
already strong) training set using a variety of distortion effects
(e.g., affine, elastic, scaling, and rotation).

4.3. Decision-making and reaction time

In the present study the decision process was based on an
accumulation model, where totals of sensory evidence race each
other to a decision threshold, and the RT is determined by the
first total to reach criterion (Bogacz et al., 2006; Smith & Ratcliff,
2004). The authors of these studies have pointed out that the
addition of self-excitation and mutual inhibition of decision pools
is a fundamentalmodification of the conventional racemodel. Self-
excitatory recurrent connections are essential to enable neurons,
whosemembrane potential decays on the order of milliseconds, to
integrate information on the timescale of hundreds ofmilliseconds
(Smith & Ratcliff, 2004). Mutual inhibition between decision pools
means that evidence for one response is evidence against all others,
which allows the model to be mapped back to the diffusionmodel.

The RT distributions shown in Fig. 10 are comparable to the
behavioral RTs reported in psychophysical experiments (Schall,
2002; Shadlen & Newsome, 2001; Thompson et al., 1996). These
studies have identified populations of neurons in frontal cortical
areas ofmonkeys, such as direction-sensitive neurons in LIP,whose
firing rates are predictive of the behavioral RT. Our network
correctly predicts (i) the shape of these RT distributions, (ii) shorter
mean RTs for correct responses than errors, (iii) an increase in
RT for ‘‘difficult’’ stimuli, (iv) similar RTs for both unfamiliar and
familiar stimuli, and (v) RT values that are comparable to those
reported in a rapid categorization study (Fabre-Thorpe et al., 1998).
We will briefly discuss each of these qualities.
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Fast behavioral responses are associated with a rapid rise in
firing rate, whereas slow responses are associated with a slow rise
(Smith & Ratcliff, 2004). According to these authors, the resulting
RT distributions are right-skewed because of the geometry of the
diffusion process paths: equal size differences in accumulation rate
between pairs of sample paths lead to unequal size differences on
the decision boundaries.

Correct responses are typically faster than errors in easy, speed-
stress conditions (Smith & Ratcliff, 2004). Our network correctly
predicts the ordering of the median RTs for correct responses
(289 ms) and errors (roughly 320 ms), while still allowing fast
errors.

When the difficulty of a decision is high, information favoring
a particular response grows more slowly (Smith & Ratcliff, 2004),
and the probability of making an error is higher (Shadlen & New-
some, 2001). The definition of difficulty is usually task-dependent.
For instance, a difficult stimulus in a motion discrimination task
would have a low level of coherentmotion. Similarly, in the present
study difficulty could be interpreted as a measure of the quality of
the visual input. The stronger a presented stimulus overlaps with
the learned weight matrices of multiple decision pools, the lower
the difference in firing rates between selective and nonselective
pools will be. Under these conditions, the network not only takes
longer to reach the decision threshold, but it also is more likely
to make a predictive error. The network was likely to reach the
decision threshold within 500 ms even for stimuli that evoked
relatively low responses (and thus might be viewed as relatively
‘‘difficult’’ stimuli to classify); thus favoringmisclassifications over
non-classifications (see Fig. 7). However, as stated in Section 4.2,
other thresholds may exist that optimize classification perfor-
mance.

The network categorizes handwritten digits in roughly 300 ms,
with the fastest observed RT being 178 ms. Pre-processing is not
included in this measure, but would only add a few milliseconds
(see Section 2.5). In order to enable the network to reach these val-
ues, we chose a decision threshold (75 spikes per pool, 5 spikes per
neuron on average) that yielded good classification performance.
The resulting RT values are similar to the ones reported in a rapid
categorization study (Fabre-Thorpe et al., 1998). In this study pre-
viously unseen images were presented to two rhesus monkeys for
only 80ms. If the picture contained one ormore examples of food –
or, in a second experiment, an animal – themonkey had a second to
signal a ‘‘go’’ response by releasing a button and touching the mid-
dle of the screen. The two monkeys were able to perform go trials
in as little as 250ms and 350msmedian response time for the food
and animal task, respectively. Humans took roughly 100ms longer
to perform the same task. Excluding the time it takes to execute a
motor response, the median visual response time could be ranging
somewhere between 150 ms and 350 ms.

Another interesting finding is that the RT of the two monkeys
did not decrease when the targets had become familiar. Although
misclassifications were punished, the monkeys would get some
targets repeatedly wrong; despite the fact that there would have
been ample opportunity to learn the stimulus features (Fabre-
Thorpe et al., 1998). We compared the RT distributions for correct
classification of either familiar stimuli (the ones in the training set)
or new stimuli (the ones in the testing set), and indeed did not find
any statistical difference.

4.4. Model capabilities and limitations

A notable implication of the synaptic learning rule is that it
enables a decision neuron to learn stimulus features which are
prevalent among the members of a certain stimulus class; simply
because the neuron will experience more common features more
often. For example, a classifier neuron which is trying to learn
the shape of the number one in the MNIST database will tend to
imprint the vertical stroke, or the right-diagonal stroke in cursive
handwritings, in its weight matrix, not necessarily the rarer (and
thus probably less defining) horizontal serif at the lower end of the
digit.

Furthermore, the synaptic learning rule natively implements a
local stop-learning condition. With each training cycle a number
of new synaptic connections should be learned, ideally leading to a
monotonously decreasing learning rate. However, unlike in other
methods, the learning rate does not simply depend on the number
of training cycles, but is adapted based on the correlation between
the state of the synaptic weight matrix and each presented stimu-
lus. The stop-learning criterion is biologically plausible, because it
only depends on information that is readily available at the site of
the synapse (Brader et al., 2007).

Wewould like to stress the fact that in the current configuration
the learning mechanism must be deactivated for testing. This
requirement is not necessarily biologically implausible, because in
the brain metaplasticity mechanisms might be able to quickly and
effectively alter LTP and LTD transition probabilities (Huang et al.,
2012).

Judging from the confusion matrix in Fig. 8, the most common
error that the network made is mistaking another digit for the
number one. In fact, if we were able to remove all mistakes of this
type, the average misclassification rate would shrink to 5.5%. This
particular mistake was usually made on narrowly drawn images,
whose spatial frequency posed problems on the pre-processing fil-
ters. In some cases weakly pronounced features, such as the hori-
zontal stroke at the upper end of the number seven,might not have
been detected by the simple cells. In other cases, the spatial pooling
of linear cell responses might have washed out a small and weakly
pronounced feature, such as the two circles in a narrowly drawn
eight. Other pairs that have similar shape and structure, such as
‘‘5 → 3’’ and ‘‘9 → 7’’, were frequently confused. Some images
are of degraded quality, making correct predictions extremely dif-
ficult even for humans.

A significant drawback of the present approach and pattern-
matching in general is that the classifier neuron will not recognize
an ‘‘atypical’’ (in terms of correlation) member of its preferred
stimulus class. It has been argued that a neuron which computes
the dot product of the input pattern with its synaptic weight
vector is unable to implement translation invariance (Rolls, 2012).
Although a neuron may be able to generalize to other patterns,
its response will simply depend on the similarity of the new
stimuluswithwhat it has already learned. Anynotion of translation
invariance must therefore come from another mechanism, and
cannot be caused by a summation of weights, however exceptional
these weights might be. This is evident in Fig. 9, where some digits
are deformed, tilted or shifted in a way that they strongly overlap
with the learned weight matrix of another decision pool, causing
the network to make predictive errors.

Nevertheless, our current approach demonstrates that the
visual information encoded in simulated V2 cell responses was
sufficient to categorize a large number of MNIST exemplars the
network had not seen before. At least in this case, increasing
the network complexity (e.g., by extending the feature hierarchy)
could only marginally improve the classification performance.

5. Conclusion

We have shown the experimental results from a neurobiolog-
ically plausible spiking network that is able to rapidly catego-
rize highly correlated patterns of neural activity. Our approach
demonstrates how a STDP-like learning rule (previously described
in Brader et al. (2007)) can be utilized to store object information
in a SNN, and how a simple decision-making paradigm is able to
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retrieve this memory in a way that allows the network to general-
ize to a large number of MNIST exemplars. Additionally, the RT of
the network is comparable to behavioral RTs from psychophysical
experiments, in that it predicts both qualitative and quantitative
properties of the reported RT distributions. Our implementation is
fast, efficient, and scalable; it is optimized to run on off-the-shelf
GPUs, but is also well-suited to be run on neuromorphic hardware
once available.

Our study is a first step into modeling large-scale cortical
networks inmore biological detail, with the ultimate goal of under-
standing whole brain dynamics such as the integration of lower-
level sensory information with higher-level decision processes.
Studying these processes is important, as perceptual decision-
making is not only believed to be the basis of more complex
decision-making routines, but could shed light on phenomena like
the misperception of objects in neuropsychiatric disorders such as
schizophrenia.
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