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Surface segmentation based on the luminance
and color statistics of natural scenes
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The luminance and color of surfaces in natural scenes are relatively independent under certain linear trans-
formations, with the luminance of a surface providing little information about the color of that surface, and
vice versa. However, differences in luminance between two locations in a natural scene remain strongly as-
sociated with differences in color. We used the statistics of the spatiochromatic structure of natural scenes as
the priors for a Bayesian model that decides whether or not two points within an image fall on the same sur-
face. This model provides a biologically plausible algorithm for surface segmentation that models observer
segmentations well. © 2003 Optical Society of America

OCIS codes: 330.1690, 330.1720, 330.4060.
1. INTRODUCTION
A good deal of the variation in spectral power reflected off
natural objects under natural illuminants can be repre-
sented by using three orthogonal axes that represent
variation roughly along luminance, red–green, and blue–
yellow directions in color space,1,2 and these variations
are very roughly independent.3 Though it has been sug-
gested that human visual systems might represent lumi-
nance and color (both red–green and blue–yellow) infor-
mation independently,3,4 the extent to which the human
visual system represents luminance and color informa-
tion within independent cardinal axes remains
unclear.5–9 This may be partly because even when the
absolute luminance of a surface provides very little infor-
mation about the absolute color of that surface, differ-
ences in luminance between two pixels are quite likely to
be associated with differences in color, and vice versa.
Differences in luminance and color are strongly interde-
pendent, though not linearly correlated.9 Two pixels that
fall on the same surface are likely to have the same lumi-
nance and color, and two pixels that fall on different sur-
faces are likely to differ in both luminance and color.

In this paper we examine these statistics governing dif-
ferences in luminance and color between neighboring pix-
els in natural scenes. We find, first, that for pixels of a
given separation (r), differences in luminance (d l) and
color (drg and dby) are not independent: A change in lu-
minance predicts a change in color, and vice versa. We
also show that differences in luminance and color be-
tween nearby pixels can be modeled by assuming that the
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probability of belonging to the same surface, p(sameur),
decreases (roughly according to an exponential function)
with the distance between the two pixels. A Bayesian
model based on these statistics segments natural scenes
similarly to human observers.

2. METHODS
We used a set of 12 images of natural scenes, the ones re-
corded by Ruderman et al.3 As described in their paper,
the images were taken with an Electrim EDC-100TE
camera. Light reaching the imaging CCD display was
passed through a variable interference filter with a wave-
length (l) range of 400–740 nm and a half-bandwidth
that was typically 15 nm at each wavelength. To create
each image, 43 successive data frames were taken at
7–8-nm intervals from 403–719 nm. Images were col-
lected from a variety of natural environments such as
temperate woodland, subtropical rain forest, and man-
grove swamp. In the corner of each scene (in a region of
the image excluded from our data set) was placed a pair of
small rectangular white and black reflectance standards
with known reflectance functions. Spectralon 100% dif-
fuse reflectance material (Labsphere) was used as the
white standard and a nominally 3% spectrally flat diffuse
reflector (MacBeth) was used as the black standard.
Each of the data frames was then calibrated by using the
values of the small black and white standards within the
frame. When this procedure resulted in negative inten-
sity values, the minimum uncalibrated pixel within the
2003 Optical Society of America
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data frame was used in place of the dark standard. No
attempt was made to correct for local variations in illumi-
nation. It should be noted that this data set contained
very few deep shadows. These images are available at
ftp://ftp.sloan.salk.edu/pub/ruderman/hyperspectral.

The three cone responses to each pixel were derived by
using SlQ(l)R(l)I(l), where Q(l) is the Stockman–
MacLeod–Johnson spectral sensitivity of the given cone
type,10 R(l) is the measured spectral reflectance and I(l)
is the standard illuminant D65 (meant to mimic a day-
light spectrum); the sum is over the wavelengths repre-
sented in the spectral data. Each pixel in the image was
therefore represented by three numbers representing the
excitations of each of the three human cones at that pix-
el’s position in space. We then transformed the data into
Ruderman–Cronin–Chiao3 co-ordinates by converting
each cone output into a logarithmic signal (base 10) and
subtracting the logarithmic mean. These logarithmic
outputs (L, M, and S) were then transformed:

l 5
1

A3
~L 1 M 1 S !, rg 5

1

A2
~L 2 M !,

by 5
1

A6
~L 1 M 2 2S !. (1)

The resulting axes, as shown by other authors,9,11–13

are similar to the three orthogonal principal axes ob-
tained by principal components analysis on this signal,2

and are similar to the luminance, red–green and blue–
yellow opponent mechanisms that have been character-
ized psychophysically and physiologically.3,4 Correla-
tions among these three measures are very small. For
our scenes, the correlation coefficient between luminance
(l) and red–green (rg) values was 20.0845, between lu-
minance and blue–yellow (by) values was 20.0391, and
between red–green and blue–yellow values was 0.0947.
A scatter plot of a thousand randomly chosen pixels pro-
jected onto the luminance and red–green axes is shown in
Fig. 1A.

Though other transformations can convert cone signals
into relatively decorrelated opponent axes, one advantage
of the Ruderman–Cronin–Chiao coordinates is that the
(biologically plausible) logarithmic transformation of the
data points distributes points along the axes relatively
uniformly. Without the logarithmic transformation, data
tend to be clustered near the zeros of the axes. Besides
their compatibility with psychophysical and physiological
data, these properties of decorrelation and even distribu-
tion of data points along the axes ensure that the statis-
tical properties described in this paper are not due to
first-order correlations between the luminance and color
of individual pixels or to the luminance and color of indi-
vidual pixels being clustered near gray. However, our
choice of this particular coordinate space was not critical
to our results.

Each of the 12 images was 1283128 pixels, with each
pixel roughly representing 333 min of visual angle.
Each picture therefore represented approximately 6.4
3 6.4 deg of visual angle. As illustrated in Fig. 1B, we
randomly sampled pairs of pixels from all of the 12 im-
ages. For each pair of sampled pixels we then computed
the difference along luminance (d l), red–green (drg), and
blue–yellow (dby) axes between the two pixels. The ra-
dius of separation (r) between the pair of pixels varied be-
tween ;3 and ;150 min of visual angle. We sampled
24,000 randomly chosen pairs of pixels for each radius
separation, sampling evenly from each of the 12 images.
The distribution of drg is much tighter than for d l or
dby .14 To allow comparison of the shapes of the distribu-
tions, the sampled values of d l , drg , and dby were inde-
pendently scaled so that 90% of the samples lay between
21 and 1.

3. LUMINANCE AND COLOR DIFFERENCES
ARE NOT INDEPENDENT
Although, as described above, correlations among lumi-
nance, red–green and blue–yellow axes are relatively
small, differences between pairs of pixels for these direc-
tions in color space do not show the same independence.
This interdependence does not, however, take the form of
a linear correlation between the differences. Figure 1C
shows a scatterplot of differences along luminance and
red–green axes for 1000 randomly chosen pairs of pixels
separated by 18 min, showing that differences along these
two axes are relatively uncorrelated.

Even though differences in luminance between two pix-
els are associated with differences in color, the sign and
the magnitude of these changes are relatively uncorre-
lated. As a result, correlation coefficients between differ-
ences in luminance and color across pixels, though signifi-
cant, are not large.9,14 For example, the correlation
coefficients between color differences for pixels separated
by 18 min were 20.1922 between luminance and red–
green axes, 20.0737 between luminance and blue–yellow
axes, and 0.1783 between red–green and blue–yellow
axes. Correlation coefficients between absolute values of
luminance and color differences were only slightly larger:
0.2358, 0.2243 and 0.1733, respectively. When indepen-
dent components analysis15 is applied to hyperspectral,
LMS,16 or RGB images,17 most of the resulting basis func-
tions represent information along separate luminance,
blue–yellow, and red–green opponent axes. Independent
components analysis does not naturally discover the par-
ticular type of higher-order nonindependence conditional
upon taking the differences in luminance and color be-
tween pixels that is described in this paper.

In contrast, examining the empirically sampled joint
density function for luminance and color differences dem-
onstrates a noticeable failure of independence. For pixel
separations between 3 and 150 min we estimated
(through sampling) the joint probability density function
(pdf), p(d l , drg , dby) for luminance and color differences
between pairs of pixels. The joint pdf for each radius of
pixel separation can be thought of as a three-dimensional
cube with axes d l , drg , and dby , filled with the probabil-
ity values for those particular values of d l , drg , and dby .
Figure 1D shows a slice through this cube in the plane
d l 5 0 for a pixel separation of 18 min. As expected, the
joint pdf is peaked at 0 along both drg and dby axes; small
differences along the red–green axis are associated with
small differences along the blue–yellow axis. Slices
through the cube in the planes drg 5 0 and dby 5 0 look
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Fig. 1. A, Scatterplot of l versus rg. B, small patch from a natural image (for an example of a full image, see Fig. 5A). Two pixels,
separated by a radius of 18 min, are shown. C, Scatterplot of d l versus drg . D, Joint pdf of differences along red–green and blue–
yellow axes for pixels separated by 18 min. E, Joint pdf of differences along red–green and blue–yellow axes for pixels separated by 18
min assuming independence.
very similar. Figure 1E shows how the d l 5 0 slice
would look if d l , drg , and dby were independent, calcu-
lated by using their marginal probabilities, i.e., assuming
that p(d l , drg , dby) 5 p(d l) • p(drg) • p(dby). The
joint density functions obtained assuming independence
are far less peaked near zero than the real joint pdf of Fig.
1D. This deviation from independence of differences in
luminance and color across pixels is captured by the mu-
tual information between (for instance) d l and drg ,
I(d l ; drg). This is the expected value of the binary loga-
rithm of the ratio p(d l , drg)/p(d l) • p(drg), or, equiva-
lently, Kullback–Leibler divergence between the joint
density and the product of the marginal densities. For a
pixel separation of 18 arc min the mutual information be-
tween between d l and drg was I(d l ; drg) 5 0.154; like-
wise, I(drg ; dby) 5 0.138, and I(d l ; dby) 5 0.131. The
mutual information between luminance and color was not
strongly effected by pixel separation: For a pixel separa-
tion of 3 min, I(d l ; drg) 5 0.182; likewise, I(drg ; dby)
5 0.085, and I(d l ; dby) 5 0.151, and for a pixel separa-
tion of 150 min, I(d l ; drg) 5 0.106, I(drg ; dby) 5 0.126,
and I(d l ; dby) 5 0.100.

4. LUMINANCE AND COLOR DIFFERENCES
AS A FUNCTION OF THE SEPARATION
BETWEEN PIXELS
The solid curves in Figs. 2A–2C show the marginal pdfs
for differences in luminance and color between pixels
separated by 3 and 18 min and between pixels in different
images, obtained by sampling randomly from all the natu-
ral images in our set. The x axis in each graph repre-
sents d l (black text), drg (red text), or dby (blue text), and
the y axis represents the probability of d l , drg , or dby .

In Figs. 2A and 2B the curves are ‘‘peaky,’’ or kurtotic,
and centered on zero; i.e., small differences in luminance
or color are more common than they would be in a Gauss-
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ian distribution. The kurtoses of these pdfs are inversely
related to the separation between the two pixels, as
shown in Fig. 2D, which plots kurtosis as a function of
pixel separation. We excluded the 0.5% tails of each dis-
tribution from our estimate of kurtosis, since these tails
added a large amount of noise to the estimates, and the
binning procedure used in our other analyses also limits
the effect of these extreme outliers. The kurtosis is
roughly similar for d l , drg , and dby , with the exception
that the drg distribution retains some kurtosis for large
separations, even in comparisons between pixels from dif-
ferent images (Fig. 2C); this may be an artifact resulting
from the limited gray-level resolution of the CCD camera,
which affects the drg distribution selectively owing to its
smaller dispersion.

The distance-dependent kurtosis of Fig. 2 is not unex-
pected. When pairs of pixels are close to each other they
are more likely to fall on the same surface; consequently,
differences in luminance and color between them are
likely to be small. When pairs of pixels fall on different
surfaces, larger differences in both luminance and color
are more likely. Suppose that any pair of sampled pixels
falls into one of two categories: Either the two pixels be-
long to the same surface (same) or they belong to different
surfaces (diff ). As a basis for an initial analysis we as-
sumed that the pdf for pixels falling on the same surface
could be approximated by the pdf for adjacent pixels
(separated by ;3 arc min):

p~d l , drg , dbyusame! ' p~d l , drg , dbyur 5 38!, (2)

and that the pdf for pixels falling on different (diff ) sur-
faces could be approximated by choosing pairs of pixels
from different images. Sampled pixel pairs are drawn
from the population of pixel pairs belonging to the same
surface with probability p(sameur), or from the popula-
tion of pixel pairs belonging to different surfaces with
probability 1 2 p(sameur), where p(sameur) depends on
the spatial separation of the pixels. Using the given ap-
proximations, the pdf for pairs of pixels, for any given
separation r, could then be modeled as follows:

p~d l , drg , dbyur !

5 p~sameur !p~d l , drg , dbyusame!

1 $1 2 p~sameur !%p~d l , drg , dbyudiff !. (3)
Fig. 2. A, Solid curves: pdf for differences in luminance and chromaticity between two pixels separated by 3 min of visual angle.
Dashed curves: modeled pdf for differences in luminance and chromaticity between two pixels falling on the same surface. Pdf ’s for
luminance differences are shown in black, pdf ’s for red–green chromatic differences are shown in red, and pdf ’s for blue–yellow chro-
matic differences are shown in blue. B, Sampled and modeled pdfs for differences in luminance and color between two pixels separated
by 18 min. C, Sampled pdf for differences in luminance and color between two pixels on different surfaces. D, Kurtosis of pdf ’s for
differences in luminance and color between pixels as a function of pixel separation. For comparison, the standard normal distribution
has a kurtosis of 0. E, Estimates of p(sameur) as a function of pixel separation for a simple model based on the assumption that ad-
jacent pixels always belonged to the same surface (solid curves) and an exponential fit (dashed curves).
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The best-fitting value of p(sameur) was found, for each
pixel separation in turn, by minimizing the rms difference
between the values of p(d l , drg , dby) obtained from Eq.
(3) and the observed values. The solid curve in Fig. 2E
shows this best-fitting value of p(sameur) as a function of
the r, the separation between pixel pairs. Next, as a test
of the assumptions of the model, estimated pdfs for differ-
ences in color (along red–green and blue–yellow dimen-
sions separately) were constructed by weighting the pdfs
for pixels falling on the same and different surfaces using
the values of p(sameur) based on luminance alone. Fits
were good for all pixel separations: For each separation
the probability distributions for luminance, red–green
and blue–yellow differences could all be reasonably well
modeled by using a single parameter p(sameur). The
dashed curves in Fig. 2B show modeled pdfs for lumi-
nance and color for a pixel separation of 18 min each
based on the value of p(sameur) constrained by luminance
alone.

On the border between surfaces, adjacent pixels do not
fall on the same surface, so our assumption that adjacent
pixels belong to the same surface is clearly somewhat in-
adequate. To deal with this, we added the assumption
that the probability of belonging to the same surface can
be described by an exponential function, where, as the
distance between two pixels increases by a fixed distance,
the probability of their belonging to the same surface
decreases by a fixed percentage; i.e., p(sameur)
5 exp(2r/r0). The advantage of using this simple equa-
tion (as compared with, for instance a power function,
which could have a form invariant with viewing distance)
is that as r approaches 0, p(sameur) approaches 1, as it
should, since pixels infinitely close to each other belong to
the same surface; and as r approaches infinity, p(sameur)
approaches 0 (though the fit at large separations could
clearly be improved). We used an iterative procedure to
find the best fitting space constant r0 5 19.5 arc min.
The dashed curve in Fig. 2E shows this new estimate of
p(sameur). We then reestimated the pdfs for the same
surfaces, using Eq. (3) but replacing our initial estimate
of p(sameur) with the exponential function. As shown by
the dashed curves in Fig. 2A, these revised pdfs were only
slightly different from those obtained by sampling adja-
cent pixels. Note that both of these approximations as-
sume that the distribution of luminance and chromatic
differences for pixels falling on the same surface remains
independent of the spacing between pixels, p(sameur, d)
5 p(sameur).

5. BAYESIAN SEGMENTATION BASED ON
COLOR
The statistics above give us the priors needed to develop a
Bayesian model that can predict whether two pixels be-
long to the same surface given the distance between them
and the difference in luminance and color between them.
The probability that two pixels belong to the same surface
given their separation is multiplied by the probability of
those luminance and color differences given that the two
pixels belong to the same surface normalized by the prob-
ability of those luminance and color differences:
p~sameud l , drg , dby , r !

5 p~sameur !p~d l , drg , dbyusame!/p~d l , drg , dbyur !.
(4)

The model has no free parameters. We obtained
p(d l , drg , dbyusame) from the approximation described in
Eq. (2). We used the values of p(sameur) shown in Fig. 2,
and we obtained p(d l , drg , dby) by directly sampling im-
ages, as shown in Fig. 1B.

We calculated a three-dimensional probability cube for
every pixel separation between 3 and 150 min. For ex-
ample, Fig. 3 shows a slice through the cube obtained for
r 5 18 min in the plane d l 5 0. The ordinate is the prob-
ability [from Eq. (4)] that two pixels 18 min apart belong
to the same surface, given the difference in luminance
and color between them. One common difficulty with us-
ing Bayesian models to predict human behavior is that es-
timating observers’ priors often requires ad hoc assump-
tions or choosing those priors that best predict observers’
performance. In both cases there is an issue of circular-
ity, where it has to be assumed (rather unrealistically)
that the human visual system has some sort of innate ac-
cess to these priors. In the case of our model,
p(d l , drg , dbyusame) and p(sameur) are based on the sta-
tistics of the natural environment, without any need for
ad hoc assumptions. This makes our model a good test
case for determining whether human performance
matches that predicted by Bayesian statistics.

6. SEGMENTATION
We compared our model with segmentations made by two
observers. Observers were presented with 36 image
patches (3 patches from each of the 12 images) subtend-
ing 105 3 105 min (corresponding to 35 3 35 pixels).
These patches were randomly chosen from the natural
image set used to fix the model parameters. The choice
of patches was constrained to be nonoverlapping and not
to extend over the boundary of the image. Image patches
were then converted from cone space to red–green-blue
space on a calibrated monitor. Observers performed the
segmentations on image patches scaled to subtend 10.2

Fig. 3. Probability, computed from the model, that two pixels
separated by 18 min belong to the same surface, as a function of
the difference in red–green and blue–yellow chromaticity be-
tween the two pixels.
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deg of visual angle while referring to a smaller, correctly
scaled image patch (the full image was not available to
the observer). In addition, both the model and observers
were presented with 18 image patches from 6 uncali-
brated digital photographs of man-made environments.

The central pixel of each image patch acted as a refer-
ence pixel. Observers categorized every other pixel in
the image patch as ‘‘very unlikely to belong to the same
surface as the reference pixel,’’ ‘‘somewhat likely,’’ ‘‘likely,’’
or ‘‘very likely.’’ Observers were given instructions to con-
sider pixels as falling on the same surface if they ap-
peared to belong to the same type of ‘‘stuff,’’ regardless of
whether they were in spatial contiguous regions within
the image patch. Each pixel was given a p(same) value
of 0, 0.33, 0.67 or 1 depending on how it had been catego-
rized. This process was repeated four times, with a ran-
Fig. 4. A, Four of the scenes that were used, with a randomly chosen 12 3 12 excised patch outlined. B, Image patches. C, Mean
estimates from a single observer of the likelihood of each pixel belonging to the same surface as the central pixel. D, Estimates from our
Bayesian model. E, Comparison of estimates of p(same) made by two observers (IF, black symbols; SK, gray symbols) with estimates
made by the model. Error bars subtend plus and minus one standard error.
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Fig. 5. A, Comparison of estimates of p(same) made by observers with estimates of p(same) made by the model averaged across all 36
sample patches of natural scenes. B, Comparison of estimates of p(same) made by observers with estimates of p(same) made by the
model averaged across all 18 novel sample patches of man-made environments (IF, black symbols; SK, gray symbols). Error bars sub-
tend plus and minus one standard error.
domized order of patch presentation. The mean of the
four segmentations was considered to be a measure of
p(same) for each observer.

The images in columns I–III in Fig. 4 come from the
natural scenes used in constructing our model. Typical
examples are shown. Panels A show the full images,
with the image patch outlined. Panels B show examples
of the image patches that were segmented. In Panels C
p(same) for one observer (IF) are shown using gray scale,
with lighter pixels representing larger values. Panels D
represent p(same) as estimated by the model for the same
patch.

In column I the reference pixel happened to fall on an
‘‘object’’ (a tree trunk) so the observer and the algorithm
picked out all ‘‘tree-trunkish stuff.’’ In column II the ref-
erence pixel fell on the background, so both observer and
model picked out the background. Column III shows an
image patch that contained relatively little discernible
structure (though it was classified as segmentable by ob-
servers): such images were relatively common in our
data set. With these unstructured images there was less
correlation between model and observer estimates. In
some of the natural scene image patches there was no dis-
cernible structure at all (e.g., the entire patch was a uni-
form color or was uniformly heavily textured) or the ref-
erence pixel fell on an edge. In those cases the observer
categorized the entire image patch as unsegmentable,
and that image patch was not included in the analysis.

For natural images, across all pixels, the correlation co-
efficient between estimates of p(same) made by observer
SK (naı̈ve, gray symbols) and the model was 0.42, and the
correlation coefficient between estimates of p(same) made
by observer IF (author, black symbols) and the model was
0.51. In comparison, the correlation coefficient between
estimates of p(same) made by observers SK and IF was
0.50. Variation between the two observers was as great
as variation between the model and each observer for the
natural images.

The image patch in column IV comes from the set of
novel man-made environments. Despite our man-made
environments containing almost no vegetation (three
were taken indoors and three were taken outside in en-
tirely urban settings), segmentation by the model was at
least as good as for the original set of natural scenes.
Correlation between the model and observers was slightly
higher for the novel man-made scenes: 0.54 between the
model and observer SK and 0.66 between the model and
observer IF. Correlation between the two observers was
0.75, higher than for the natural scenes and higher than
the correlation between the model and observers. This is
probably because the made-made scenes contained a
large amount of contour information not available to the
model.

Panels E in Fig. 4 compare estimates of p(same) made
by both observers to model estimates of p(same). For
each image we divided pixels into ten bins based on model
estimates of p(same). Again, there were different num-
bers of pixels in each bin, and we averaged observer esti-
mates of p(same) for all the pixels in each bin. These ten
points are shown. As the model’s estimate of p(same) in-
creases, so do observers’ estimates of p(same).

Figures 5A and 5B compare estimates of p(same) made
by both observers to model estimates of p(same) averaged
across all natural images patches and across all 18 novel
scenes. Because there were a large number of pixels, we
were able to divide pixels into 40 bins based on model es-
timates of p(same). (There were again different num-
bers of pixels in each bin.) We then averaged observer
estimates of p(same) for all the pixels in each bin. These
40 points are shown in Fig. 5. As the model’s estimate of
p(same) increases, so do observers’ estimates of p(same),
although one observer’s probabilities always exceed those
of the model (see below).

Although observers were asked to estimate the prob-
ability that two pixels belonged to the same surface, it is
likely that observers were in fact performing some sort of
rating judgment (such as rating the similarity and color
between the two pixels). The probability values assigned
by observer IF were fairly close to those of the model.
This could reflect experimenter bias, since although the
observer had never seen the performance of the model on
the particular test patches used, the observer was aware
of the distribution of probability values typically assigned
by the model. The p(same) assignments of the naı̈ve ob-
server (SK) showed response compression, best fitted by a
power function of the model probabilities with an expo-



1290 J. Opt. Soc. Am. A/Vol. 20, No. 7 /July 2003 Fine et al.
nent of 0.1746 and a correlation coefficient of 0.94. SK’s
probability assignments therefore resembled rating judg-
ments, which usually follow a power function,18 more
than genuine probability assignments. However, as
noted above, the correlation coefficient between observer
IF’s estimates of p(same) and the model’s estimate of
p(same) was little better than the correlation coefficient
between observer SK’s estimates of p(same) and those of
the model.

7. MODEL LIMITATIONS AND
COMPARISON WITH OTHER MODELS
The performance of the model showed some dependence
on spatial scale. Correlations between the model and the
observer for the central region of our test patch (statistics
were computed over the central 10 3 10 pixel square of
each image patch) were 0.55 for observer IF and 0.53 for
observer SK. Performance for the outer corners of the
test patch (statistics were computed over a 5 3 5 pixel
square in each of the four corners of each image patch)
was worse, 0.31 for observer IF and 0.31 for observer SK.
There is obviously information in the image patches that
is used by observers that is not available to the model,
and these other types of information seem to increase in
importance as a function of the distance between two pix-
els.

One possible source of this spatial-scale dependency is
gradual illumination changes over the scene. Our model
is insensitive to many of the cues that observers may use
to attribute a change in luminance and chromaticity to a
gradual change in illumination rather than a change in
surface. For example, our model is insensitive to
whether the change in color and luminance between two
pixels occurs gradually or abruptly in a step function.
Our model also makes an assumption, inconsistent with
the presence of gradual changes in illumination, that the
distribution of luminance and chromatic differences for
pixels on a common surface is independent of the spacing
between the pixels. Another possible source of spatial-
scale dependency is that object-level information may
play more of a role when a large distance separates pairs
of pixels. For example, our model considers two pixels of
the same luminance and chromaticity as belonging to the
same surface, regardless of the color and luminance of in-
tervening pixels. Observers are likely to be sensitive to
the luminance and color of intervening pixels in deciding
whether two bright green pixels belong to the same leaf or
two separate leaves.

Our model also does not consider the role of highlights,
shadows, or shading that are due to surface slant. All
these result mainly in a change in luminance, but they do
generally also result in a small chromatic shift: For ex-
ample, shadows cast by foliage tend to have a greenish
hue. It should be noted that the natural image set that
we used, like some others in the literature,19 did not con-
tain many deep shadows or highlights. This lack of
shadows and highlights in our initial data set may have
affected the statistics of our model slightly. However
when testing our model, we made no attempt to avoid
deep shadows in our novel man-made environment
scenes. We noticed that when observers segmented
scenes containing deep shadows in either the natural or
the man-made environment images, they tended to assign
the shadow or highlight to a different surface, as did the
model; see Fig. 4, column IV, for an example. It is plau-
sible that under natural viewing conditions high-level ob-
ject information, which was not generally present in our
2.5-deg image patches, interacts with color and lumi-
nance information in order to discount deep shadows and
highlights.

Restricting the available information to luminance sig-
nificantly impairs the ability of the model to imitate hu-
man judgments. For natural images the correlation co-
efficient between human estimates of p(same) and those
from the Bayesian model dropped from 0.42 (SK) and 0.51
(IF) when both color and luminance information was used
in the model to 0.35 and 0.38, respectively, when only lu-
minance information was used in the model. For many
scenes, removing color information made little difference;
but in a few image patches, such as the one in Fig. 4, col-
umn II, where luminance differences within the scene
were small but color differences were large, segmentation
was much better when color information was included.

8. CONCLUSIONS
Various roles for color vision have been proposed, includ-
ing finding or discriminating edible fruits and leaves,20,21

facilitating scene and object recognition,22,23 and improv-
ing search under certain conditions.24 There has also
been increasing interest within computer science in using
color as a means of segmenting and identifying ‘‘meaning-
ful regions’’ within a scene.25–28

This paper describes a biologically plausible segmenta-
tion model based on luminance and color differences
within natural scenes. We found that color and lumi-
nance differences show a striking lack of independence:
When two points fall on the same surface, differences in
luminance and color between the two points tend to be
small. Conversely, when two points fall on different sur-
faces, the distribution of luminance and color differences
tend to be larger. These statistics for color and lumi-
nance differences are not easily captured by correlation
statistics or by independent components analysis, though
our Bayesian model captured these dependencies well.
Demonstrations of a similar lack of independence have
been made in other domains, such as motion and achro-
matic contrast,29,30 and analogous approaches have been
successful in modeling contour detection performance.31,32

We found that a Bayesian model (with no free param-
eters) based on color and luminance pairwise differences
segmented images similarly to human observers, both
with an image set based on natural scenes and with a
very different novel image set containing both natural
and man-made environments. The generalization of our
results to novel scenes is consistent with the notion that
observers may use a single set of priors based on an av-
erage distribution of luminance and color pairwise differ-
ences as a basis for image segmentation.

Our model was very naturally implemented as a
region-based segmentation model (though it could be eas-
ily extended to an edge-detector model). Region-based
models perform very differently from edge detectors; for
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example they are robust to occlusion. Our model, be-
cause it contains little information about spatial statis-
tics, considers pixels as belonging to the same surface if
they are similar in luminance and color, regardless of
whether there is a boundary between them. It links dis-
jointed regions that are separated by edge-based segmen-
tation techniques. In some contexts this is a shortcom-
ing, in others an advantage. It is easy to see how the
information provided by our model might subserve pro-
cesses like global feature-based attention and search, al-
though the Bayesian prior as a function of separation
would be less relevant under such circumstances.

Interestingly, our model predicts that segregation
based on differences in color and luminance should be car-
ried out by neurons that are sensitive to differences in
both luminance and color but insensitive to the sign of
those differences. Such chromatic complex cells are ap-
parently common within many cortical areas; but because
they are insensitive to the sign of chromatic contrast, they
have not traditionally been defined as color cells.4,32

These neurons may play an important role in processing
the joint luminance and color structure of scenes.
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