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This study reports the use of unsupervised, self-organizing neural network to categorize the
repertoire of false killer whale vocalizations. Self-organizing networks are capable of detecting
patterns in their input and partitioning those patterns into categories without requiring that the
number or types of categories be predefined. The inputs for the neural networks were
two-dimensional characterization of false killer whale vocalizations, where each vocalization was
characterized by a sequence of short-time measurements of duty cycle and peak frequency. The first
neural network used competitive learning, where units in a competitive layer distributed themselves
to recognize frequently presented input vectors. This network resulted in classes representing typical
patterns in the vocalizations. The second network was a Kohonen feature map which organized the
outputs topologically, providing a graphical organization of pattern relationships. The networks
performed well as measured ki) the average correlation between the input vectors and the weight
vectors for each category, aii@) the ability of the networks to classify novel vocalizations. The
techniques used in this study could easily be applied to other species and facilitate the development
of objective, comprehensive repertoire models. 1@98 Acoustical Society of America.
[S0001-49688)03312-9

PACS numbers: 43.80.K&D]

INTRODUCTION the frequency contour of the whistles through fundamental
Quantifying a species’ repertoire is a fundamental Chal_frequency analysis. The algorithm then performed a nonuni-

lenge in the study of animal vocalizations. Many attempts©™M time dilation to align the contours by minimizing the
have been made to characterize the various sounds produciétid! square difference between the observed contour and a
by dolphin (Delphinida@ species. However, little progress reference contour. Finally, the algorithm computed a dis-
has been made in developing objective, comprehensive ref@nce measure between the observed contour and a library of
ertoire models. The development of such models is importarfeference contours. The observed contour was assigned to
because they can facilitate comparisons both within and behe closest reference contour. The technique was derived
tween species, aiding in the development of functional modfrom speech recognition approachésg., Itakura, 1976
els. Currently, the field lacks an objective method capable oénd assumed that two whistles with similar contour shapes
classifying the entire vocal repertoire of a dolphin specieswere the same, despite any differences in absolute length of
Murray et al. (1998 describe a method capable of character-the vocalization.
izing dolphin vocalizations that can be applied to all signal McCowan (1995 made similar assumptions about
types(e.g., pulsed and continuous wavefoym$his paper which features are most important in whistle analysis. In
extends that work, demonstrating how self-organizing neuraaddition to generalizing across whistle length, she assumed
networks can classify the repertoire of false killer whalethat whistles that have been shifted up or down in absolute
vocalizations: frequency, while maintaining the same “shape,” should be
Techniques that categorize dolphin vocalizations basedategorized as the same. Twenty measurements of peak fre-
on objective and quantitative analysis methods have recentijuency were taken to represent each whistle. The frequency
been explorede.g., Buck and Tyack, 1993; Dawson and measurements were used to generate a correlation matrix,
Thorpe, 1990; McCowan, 1995A dynamic time-warping and principal component analysis was conducted using the
method was used by Buck and Tya€k993 to assess the correlation matrices. The factor scores from each data set of
similarity of bottlenosed dolphin(Tursiops truncatus \yistles were subjected -means cluster analysis to group
whistles. The method used an algorithm that first extractegyhistles into clusters based on contour similarity. By using
correlation matrices, the technique was able to cluster
dElectronic mail: smurray@itd.ucdavis.edu whistles that differed in absolute duration and frequency.
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Both of these techniqueBuck and Tyack, 1993 and false killer whale vocalizations. Each vocalization was char-
McCowan, 1995 are vast improvements over subjective acterized by its simultaneous modulations in duty cycle and
judgment in that they ensure reliable classification perforpeak frequencyMurray et al, 1998. The short-time duty-
mance. However, these techniques have only been applied tycle measure compares the signal to a continuous sinusoid.
whistle-type vocalizations and they may, in fact, be limitedAs the signal approaches a continuous sinusoid, the duty-
in their ability to categorize other signal types. Both methodscycle measure begins to approach 1.00. Pulses are repre-
only consider frequency information and do not take intosented as lower duty-cycle values as a function of pulse rep-
account changes in amplitude characteristics that occur withtition rate(Murray et al, 1998. Consequently, high duty-
pulsed vocalizations. cycle vocalizations are heard as whistles; lower duty-cycle
values correspond to pulsed vocalizations. The duty cycle/
peak frequency representational scheme presented here is not
subject to the same constraints as spectrograms. With spec-

Neural networks are a promising technique in the analytrograms, the time-frequency tradeoff can qualitatively alter
sis of animal vocalizations. Neural networks have been sucthe signal representatidor “type” ). For example, a pulsed
cessful at classifying a number of complex signal types, insignal can appear to be continuous with the proper window
cluding human speecke.g., Kohonen, 1988; Huang and size. Here, the time—frequency tradeoff only affects the reso-
Kuh, 1992 and dolphin biosonar echoe®.g., Au and lution of the peak frequency measurements and does not af-
Nachtigall, 1995; Roitblaet al, 1989. The study reported fect the type of signal as represented by the duty cycle mea-
here employsunsupervised neural networkbnlike super- surements.
vised neutral networksée.g., multilayer perceptrojsunsu- The first neural network used in this study usednpeti-
pervised networks require only weak assumptions about théive learing where units in a competitive layer distributed
number and type of potential categories. Unsupervised nethemselves to recognize frequently presented input vectors.
works are capable of learning to detect regularities and corThe result of this network was a set of classes representing
relations in their input, and adapting their responses to thaypical patterns in the vocalizations. The second network
input (Demuth and Beale, 1993Unsupervised networks are used was a Kohonen feature map, which is similar to a com-
called self-organizing because the organization is not impetitive network in many respects. The additional aspect of a
posed on them by an outside intelligent agent, but instead iature map is that the outputs are organized topologically.
learned as the outcome of the patterns to which they ar@imilarity among patterns are mapped into closeness rela-
exposed and the learning algorithm which adjusts theitionships on a grid, providing a graphical organization of
weight structure. Generally, unsupervised neural networkattern relationshipgDayhoff, 1990.
partition a given data set into disjoint subséts., catego- The primary advantages to the techniques used in this
ries), such that patterns in the same category are as alike £udy are that all emitted vocalizations were characterized
possible, and patterns in different clusters are as dissimilar a45ing a single method, and the outputs of the characterization
possible(Mehrotraet al, 1997. While most unsupervised Were organized into patterns based on the features present in
networks share this similar goal, they may differ in the spethe vocalizations. Both types of neural networkempeti-
cifics of their mathematical implementation. tive and Kohonen feature mapequire fewa priori assump-

Self-organizing neural networks, similar to the one pre_tions regarding the categorical structure of the vocalizations.
sented in this paper, have been used previously to C|assiﬂ>mstead, the networks search for correlational structure in the
humpback whale song vocalizatioti@/alker et al, 1996. data and form categories around these centers of correlation.
Time-frequency representatiotspectrogramsof humpback Both networks were used in order to contrast their respective
whale song units were used as inputs into a self-organizin§UtPuts.
feature map. The network classified the song units similarly
t_o human v!sual and_ aural impressions and traditional statlsi—_ METHODS
tical clustering algorithms.

The technique presented by Wallegral. (1996 can be The 500-vocalization data set used in Murrayal.
applied to the entire song repertoire, but spectrograms may 998 was used for this study. The vocalizations were from
not be the best choice for neural network inputs. The time-two false killer whales, one male and one female, located at
bandwidth tradeoff inherent in all spectrogram-like represenSea Life Park, Oahu, Hawaii. Recordings were made by iso-
tations can dramatically affect the representation of a signahting each animal in a distant portion of its tank while the
and how it is classified. Very different spectrograms can reother animal remained behind a gate in another portion of the
sult from the same signal following only slight changes intank. The minimum distance between the animal being re-
the window size. For example, a signal can appear to be eorded and the other animal behind the gate was approxi-
continuous whistle with a large window size, and appear tanately 30 m. While recording, the trainer positioned the ani-
be a series of short pulses with a small window. In the abmal’s melon(forehead region of the animal from which it is
sence of information about the animal’s integration window,believed sound emanajesnderwater so that its head was
therefore, arbitrary window sizes and shapes may misleadbout 1-2 m away from the hydrophone. This procedure
categorization. ensured very high signal-to-noise ratios, as well as confi-

The inputs for the neural networks used in the studydence concerning the identity of the animal making the
reported here were two-dimensional characterizations o$ounds(Murray et al., 1998.

A. Self-organizing neural networks
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All sounds were recorded with a Sony digital audio-tapetion both vectors equdll 0].) What is preserved after nor-
recorder(DAT), TCD-D8, which uses a sampling rate of malization is the dynamics, or the change of the signal across
44.1 kHz, for a frequency bandwidth to 22 kHz. A hydro- time relative to the mean.
phone(custom-built by W. Ay with a sensitivity of —185 The inputs for the neural networks were a combination
dB and a bandwidth to 200 kHz was used for all recordingsof duty cycle and peak frequency values. Input vectors were
Using a quasirandom procedure, 500 vocalizations were cha@onstructed by concatenating the two 30-element vectors into
sen for analysis and digitized onto a PC using aa single 60-element vector. To test the reliability of the cat-
SoundBlaster-32 sound card. egories formed by the network, a subset of 250 input vectors

A single vocalization was defined as an uninterrugted was chosen randomly from the set of 500 to serve as a train-
time) sound emission and could encompass multiple sounihg set. These vectors served as inputs to train the network.
“types” (e.g., a whistle and pulse trainThe data set in- The remaining 250 vectors served as a test set. The perfor-
cluded a random sample of 250 vocalizations from each omance of the network developed with the training set was
the two false killer whales. Each vocalization was sequence@ompared with the test set. The neural networks were imple-
into a series of short-duratiofb12 point—approximately mented using custom script-code accessing functions in
11.6 m3 nonoverlapping time windows and described alongMATLAB’ s Neural Network ToolboXThe MathWorks, Ing.
two dimensions: duty cycle and peak frequency. Duty cycle
refers to the percentage of time a signal is “on” relative to
the total length of the signal and in this context is relative toll. COMPETITIVE NETWORK
the 512-point window length. The duty cycle algorithm as-
signed a value between 0(@o signal—e.g., an interpulse The uni_ts in the competitive network were initializ_ed to
interva) to 1.00 (a continuous signal—e.g., a whistldn ran_dom weight vectors with the number of elemgnts m_each
this way, the duty-cycle measure gave an approximation oyveight vector equal to the number of elements in the input

the type of wavefornie.g., pulsed versus continuguaithin vectors(i.e., 60 elemenis An input vector was presented to
each time window. the network and the angle between the input vector and each

The characterization vectofsluty cycle and peak fre- of the unit’'s weight vectors was compu?ed. The unit with the
quency for each vocalization served as the inputs into aSmallest angular difference from the input vector was the
self-organizing, competitive neural network and a two- WiNner.” The weights of the winning unit were adjusted in
dimensional, self-organizing feature map. The input vectordhe direction of the input vector. The size of the adjustment
for the networks must have the same number of elementdvas controlled by a learning-rate parameter. Therefore, when
therefore, the characterization vectors for each vocalizatioff® S2mMe input vector was presented again, the winning unit

were sampled 30 times at regular intervals. The average dyv@s more likely to win and its values were adjusted closer to
ration of each vocalization was 506 ms (s:@61ms), the input vector. The weight vectors of each of the units, at

meaning that most vocalizations had approximately 40 win{n€ €nd of training, represented prototypes or category “cen-

dows. The use of 30 samples was arbitrary, but preliminar}ro'ds'” i .

analysis demonstrated it to be sufficient to capture the dy- To summarize, the competitive network worked as fol-

namics of most signals. When pulse trains were analyzed, thlgws:

zero elementgérepresenting interpulse intervalend nonzero (1) Apply an input vectorX.

elements (representing individual pulseswere sampled (2) Calculate the angular distand® betweenX and the

separately. This was done to maintain the same relative spac- weight vectorsV; of each unit. Since normalized inputs

ing of zero and nonzero elements in the vectors. and weight vectors were used, the cosine of the angle
Before presentation to the neural network, the input vec-  betweenX andW equals the dot product:

tors were scaled ta scores, using the grand mean and stan-

dard deviation over all signals. The mean for the duty-cycle

values was 0.46 (s.€.0.34) and the mean for peak fre- (3) The unit that has the weight vector closesiidi.e., the
quency was 7122 Hz (s€2687 Hz). Signal vectors were largest dot produgtis declared the winner. The winner’s

then normalized to unit length by dividing each vector by its weights are adjusted in the direction Xf by the for-
length, meaning that the input vectors lay on a unit hyper-  nula:

sphere. The input values were normalized because the neural
network algorithm used maximum dot product as a similarity ~ W;j[n+1]=W;[n]+ a(X—W;[n]),
measure. If two vectors are of unit length, the dot product is
equal to the cosine of the angle between the two vecias

wheren indicates the iteration number, aadthe learn-

. . ? A . ; ing rate.
a “meaningful” measure of similarity Normalizing to unit . .
length removes magnitude information from the inputs and is(4) \Ijscrzg:m stepsl) through(3), cycling through each input

important to consider when interpreting the results. For ex-

ample, after normalization afscored feature vectors, a win- After training, each of the input vectors was assigned to
dow which was 0.1 standard deviations above the mean ithe unit(category whose weight vectotcategory centroid
frequency and of mean duty cyclé.1 0], would be treated was closest. The performance of the network was assessed
as equivalent to a window that was 3 s.d. above the mean ihy calculating the average cosine of the angle between each
frequency and of mean duty cycl8 0]. (After normaliza-  unit's weight vector and the input vectors assigned to it. In
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other words, the degree to which each input vector was repulsed vocalizations. Weight vector 5 has low duty-cycle
lated to its respective unit's weight vector was measured. values and high peak-frequency values and seems to repre-
sent high-frequency pulse trains.

The performance of the neural network was evaluated

The number of units in a winner-take-all network deter-by first calculating how much of the input space was ac-
mines the maximum number of potential categories. Theounted for by each weight vector. The cosine of the angle
number of units ultimately used in training the network wasbetween each input vector used for training and each unit's
arrived at through a trial-and-error procedure by first startingveight vectors were calculated. The input vectors were as-
with a large number of units—i.e., many more than reasonsigned to the category represented by the unit with the clos-
ably suspected categories—and then reducing the numbesst weight vector. Thus, there were five clusters of input
Forty units(possible categorigsvere first used. Presentation vectors corresponding to the five units. A total of 94 of the
of the training vectors was iterated 20 000 times at learnindraining vectors clustered with the weight vector of unit 1
rates of 0.05 and repeated with a rate of 0.10. In both case§\W1), 25 with W2, 43 with W3, 27 with W4, and 61 with
only five of the units learned—i.e., showed adjustments inV5.
their values. The number of units was subsequently reduced The average similarityas measured by angular dis-
by one-half(from 20 to 10. In all cases, only five units tance across all training vectors and their respective catego-
adjusted their weights. ry’s weight vector was 0.72. Additionally, the average simi-

The network was trained with five units at a learning larity was calculated between the members of each category
rate of 0.10 for 10 000 iterations. The weight vectors fromand the four “unassociated” units. The average between-
each of the five units after training are shown in Fig. 1. Thecategory similarity was-0.11. The results reflect the general
X axis represents each of the 60 elements of the vectors argipal of an unsupervised network—to partition a data set into
they axis represents normesscore values. Zero represents disjoint subsetg(i.e., categorigs such that patterns in the
the mean; values above and below zero represent deviatiosg@me category are as alike as possible, and patterns in differ-
from the mean. The first 30 elements representing duty-cyclént clusters are as dissimilar as possible. Referring to Table I,
values are shown above the second 30 elements representifi¢ average within-category similarity is shown in the main

A. Results

peak frequency. diagonal. The other cells in the table show between-category
Looking at weight vector IW1) in Fig. 1, the first 30  similarity. .
elements(representing duty cycleare constant and of rela- The 250 vectors not used to train the network served as

tively high value. The representation of peak frequency?d novel test set. Each member of the test set was clustered

(dashed lingis ascending. This vector represents ascendingith the nearest weight vector from each of the five units. A
whistle vocalizations. The false killer whales used in thistotal of 93 of the test vectors clustered with W1, 20 with W2,

study frequently made short-duration ascending whistles#1 with W3, 28 with W4, and 68 with W5. The distribution

these vocalizations are one of the most salient vocalization@f vocalizations among the weight vectors in the test set is
when listening to the animals in almost any behavioral conclosely aligned with the training set, suggesting representa-
text. Because these vocalizations were so commonly odive samples for both the training and testing data set. The
served, the observance of a weight vector that representéyerage similarity between each test input vector and its

these vocalizations gave validity to the performance of the/nit's respective weight vector was 0.69. Performance of the
neural network. network with the test sei0.69 is comparable to that of the

Looking at weight vector ZW2) in Fig. 1, the first 30 network us_,in_g the training s€0.72. The average between-
elements(representing duty cyclebegin at relatively high catégory similarity for the test set was0.11(see Table .
values, then approximately halfway througglement 13 or The competitive neural network recognized five major
14) drop in value. This weight vector seems to represent th€ategories in the false killer whale vocalizations analyzed.
whistle—pulse-train vocalizations. These vocalizations begin! € Within-category similarity was high, with an average
as whistles, then switch to what sounds to us like a click trairfOrrelation of 0.72. Additionally, the categories learned with
or a rapidly pulsed vocalizatiofMurray et al, 1999. Look- the training set were able to be generalized to the novel test
ing at elements 31 to 6Qrepresenting peak frequencyit ~ S€L suggesting that_the categorie_s_are reliable. The competi-
appears that during the high duty-cycle portiéire., the tive network approximates the minimum number of catego-

whistle), peak frequency is ascending. During the pulse-traif €S Présent in the input patterns. The next network used, a
portion, the peak frequency of the end of the whistle is mainiohonen feature map, provides a different representation of

tained at a relatively constant level throughout the duratiori® vocalizations.
of the pulse train, similar to the examples presented in Mur-
ray et al. (1998.

Weight vector 3 is straightforward to interpret. Both the lll. FEATURE MAP
duty cycle(first 30 elementsand the peak frequendgecond The two-dimensional feature map used in this study was
30 elementsare relatively constant and at low values. Thissimilar to the competitive network described above. How-
vector is the result of low-frequency pulse trains. Weightever, the competitive units were ordered topologically in a
vector 4 has a similarly straightforward interpretation. It hastwo-dimensional square grid. Each unit had neighbors on the
intermediate duty-cycle values and low peak-frequency valgrid where a neighborhood of diameter 1 included a specified
ues, and is likely the result of lower frequency, rapidly unit and its immediately adjacent neighbors. A neighborhood
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FIG. 1. The weight vectors of each of the five units after training with duty-cycle and peak-frequency inputs. The 60-element weight vectors are shown with
the first 30 element&luty cycle plotted above the second 30 elemeimsak frequency Zero(y axis) represents the grand mean for each dimengionmed

z score$. The weight vector from unit IW1) has relatively high duty-cycle values and ascending peak frequency. This unit represents ascending whistle
vocalizations. The other units can be interpreted similarly.

of diameter 2 included the diameter 1 units and their immewinner’'s neighbors. The result was that neighboring units

diately adjacent neighbors. The feature map in this studyended to have similar weight vectdfise., represent similar

used a X5 grid. portions of the input spageDuring the initial stage of train-
The feature map differed from the competitive networking, the neighborhood size encompassed the entité §rid

in terms of which units had their weights updated. In addi-(i.e., each unit adjusted its weights in response to each input

tion to updating the winner, the feature map updated therectop and was decreased linearly so that it reached a mini-
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TABLE I. The mean similarity/correlation between each cluster of the train- Referring to Fig. 2, unit42,4), (2,9, (3,4, and (3,9

ing set and each of the five unit’s weight vector. Within-category similarities(i e middle/right of grid represent relatively high and con-
are in the main diagonal; all other cells show between-category similarities. t .’t dut | d duall di K f .
This table highlights the ability of the competitive neural network to form stant duty cycles and gradually ascending peax Irequencies.

maximally distinct categories. These weight vectors are similar to the weight vector of unit
1 (W1 in Fig. J) in the competitive network and correspond
Weight 1 Weight 2 Weight 3 Weight4  Weight5 to ascending whistle vocalizations. Similarly, unit,1),

Cluster 1 0.81 006  —058 045  —0.70 (4,2, (5,1, and (5,2 (i.e., lower-left portion of the grid
Cluster 2 0.06 0.63 -0.08 -0.11 0.05 represent low duty-cycle, high-frequency vocalizations. In
Cluster 3 —0.53 —0.08 0.70 0.07 0.33 the upper-left portion of the grid, unitg,1), (1,2), (2,1), and
g:zzgg —006472 _%2027 %%73 _8-;‘1‘ _8?2 (2,2, represent whistle-pulse-train vocalizations. These
' ' ' ' ' units are similar to unit ZW2 in Fig. 1) of the competitive
network.

mum of 1 after one-quarter of the training cveles and re- The distribution of the training-set input space across the
q g cy .~ topology of the network is shown in Fig. 3 as “training set.”

-, . S . rhe input space is heavily distributed in the lower kgfor-
feature map to move initially in the direction of the input responding to high-frequency pulse traimsid middle right

space, then, as the nglghborhood size decreasc_ad to 1, the n}%Brresponding to ascending whisjlexf the topology. The
ordered itself topologically over the presented input VeCtorSdistribution was also calculated for the novel test inputs and
The first three steps outlined above for the competitive

network apply to the feature map. The following are thels depicted in Fig. 3 as “test set.” The two distributions are

additional properties of the feature ma similar with a correlation of 0.89.
prop P The categories developed by the feature map were con-

(1) The winning unit,W,, is designated as the center of a sistent with those of the competitive neural network. Many
group of units(i.e., a neighborhogdthat lie within a  of the patterns in the weight vectors that were seen in the

distanceD (neighborhood sizefrom W.. competitive networks were evident in the feature map. Ad-

(2) Train this group of units according to the formula: ditionally, the input spaces in both the competitive and fea-
ture map networks seemed to distribute themselves similarly.
Wijln+1]=W;[n]+ a(X—=W;[n]) For example, units representing constant/high duty cycle and

ascending peak frequendgscending whistlgsattracted a

o large percentage of the input space in both the competitive
As the training progresses, the valuesloénd « (the learn-  npetwork and the feature map.
ing rate are gradually reduced.

By assessing the number of input vectors that activate¢yy, p|ISCUSSION

(clustered with each unit, it was possible to examine the ¢ | " lassifv th
distribution of the input space across the topology repre- WO types of neural networks were used to classify the
sented by the network. Similar to the competitive network avocallzatlons: a competitive network and a two-dimensional
set of 250 vectors, randomly selected from the total pool of€aturé map. Both networks were trained with a combination
500, were used as input vectors for training. The remainind’ duty-cycle and peak-frequency input values. The competi-

250 were used to test reliability. Reliability was measured b ive network learned five different categories. The fact that

correlating the distributions across the topological map of thd"€ Nétwork leamed the two obvious categories—whistles
training vectors and the test vectors and click trains, reflected by both high and low duty-cycle

weight vectors, respectively, attests to the validity of the net-
A. Results work.

The feature map was trained for 15 000 iterations at a  Based on interpretation of the five weight vectors from
learning rate of 0.15. The weight vectors after training are"€ competitive network, the main categories seem to be as-
presented in Fig. 2. The first 30 elements in each plot reprecending whistles, low-frequency pulse trains, and high-

sent duty-cycle values, and elements 31 through 60 represefigquency pulse trains. The network also recognized the
peak frequency. Row and column notati@ow, column whistle—pulse-train transitions as a significant categ(ge

will be used to refer to specific units on the grid in Fig. 2. Fig- 1, W2. The peak frequency of the high duty-cycle por-
tion (i.e., the whistle of this category was ascending. The
TABLE Il. The mean similarity/correlation between each cluster of the testpUIse'tram componer(iow dUIy Cyde seemed to maintain
set and each of the five unit's weight vector. When the trained network idhe peak frequency of the end of the whistle.
presented with novel vocalizations, very similar patterns of similarity/ It is important to point out that the ability of the neural
dissimilarity are found as compared to the training Jetble ). network to learn these “combination” categori@sategories
with both continuous-wave and pulsed componewias fa-
cilitated by the use of a measure of waveform shape. Be-

for all weight vectors within a distande of W...

Weight 1  Weight2 Weight3 Weight 4 Weight 5

Cluster 1 0.75 0.09 —0.60 035  -062 cause of the aural and spectral distinctiveness of many

g:us:erg 005027 g-gg ‘8-23 ‘8-2; 82; pulsed versus continuous sounds, vocalizations that possess
uster —0. —0. . . . . . . . . .

Cluster 4 041 011 0.04 0.68 _058 combinations may be arb_nranly separated into dl_ffergnt

Cluster 5 —0.66 0.07 031  -061 0.73 components. Therefore, it is unlikely that the combination

categories would have been arrived at through subjective
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FIG. 2. The topology of the input space using duty-cycle and peak-frequency values.akizin each plot represents the element number of each weight

vector. The first 30 elements represent duty cycle and the elements 31 to 60 represent peak frequerayis Tepresents scaled and normalized duty-cycle

and peak-frequency values, where zero represents the grand mean. Units on the right/middle side of the topology have relatively high duty cycle and ascending
peak frequencyascending whistlgs Units in the lower-left portion have low duty cycle and relatively high peak frequéhigh-frequency pulse traihs

Also, units that are close to each other have similar-looking weight vectors.

classification techniques such as aural analysis of visualf potential categories in the data set. Additional character-
analysis of spectrograms. For example, if aural analysis weristics were revealed by the feature map, such as the relative
used, a whistle that suddenly changed into a pulse {sga distribution of the input spacghrough category redundancy
Murray et al,, 1998, for examplesmight be classified into and the topological relationships between categories.
two separate vocalizations: a whistle immediately followed  The neural network classification scheme presented here
by a pulse train. However, with the short-time duty-cycleis easily amenable to different types of acoustic signal rep-
measure, the continuity of the vocalizations was preservedesentations. For example, there may be other relevant di-
The use of an objective measure of signal type allows for anensions, such as signal duration, which may be important
different definition of a single vocalization: an uninterruptedto include in future implementations of these networks. Like-
(in time) sound emission as opposed to a certain subjectivevise, some investigators may only want to consider a certain
class of vocalizatione.g., whistle or pulse trajn Such a duty-cycle categorye.g., whistles in their analysis. Such
definition is likely more functionally relevant because it is networks could limit their inputs to relevant spectral features
defined by the vocalizing animal and not by the subjective
judgment of a human listener.

The categories developed by the self-organizing feature

map complemented the results obtained with the competitive 5T 7 47 3 1 s T e Tie
network. The types of weight vectors observed in the com- 57713 12 2 12 1151 16
petitive network were also seen in the feature map. Addition- =13 9 [ 7 T 181510
ally, the input distribution patternsi.e., input clustering TR EED ¢ 16 151 17
were very similar in both the competitive and feature map 33T 13722 [ 9 B 1914 9

networks. Both types of networks demonstrated that the self-

organizing approach, using the two types of iNpUsity k. 3. The distribution of the duty-cycle and peak-frequency input space
cycle and peak frequengyis a very effective way of catego- over the topology depicted in Fig. 2. Most of the input vectors of both the
rizing dolphin vocalizations. training set and test set clustered in the right-mid@scending whistlgs

portion of the topology and in the lower-left portigpulse traing The two
Thoth the results of _the two types of networks Weredistributions have a Pearson’s correlation of 0.89, meaning that the distri-
complementary, each has its own advantages. The compefion of the input space in the trained network is generalizable to novel

tive network was effective in finding the minimum number vocalizations.
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(e.g., fundamental frequencyOverall, the networks are very  mals edited by R. A. Kastelein, J. A. Thomas, and J. A. Thofze Spil,
flexible, and it is ultimately up to the investigator to deter- The Netherlands pp. 183-199. o S
mine which inputs are most relevant to his or her particulaPuck J- and Tyack, R1993. “A quantitative measure of similarity for
e Tursiops truncatussignature whistles,” J. Acoust. Soc. ArB4, 2497—

classification task. . - . 2506.

In summary, the techniques used in this study provide aawson, S., and Thorpe, €1990. “A quantitative analysis of the sounds
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e : .. “ ,, . and multilayer perceptron for isolated word recognition, rans.

The ability _of sel_f organizing networks to search for in Signal Processl1, 2651—2675.
herent relationships in the data and form categories based Qakura, F. (1975. “Minimum prediction residual principle applied to
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