
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/13429327

The	neural	network	classification	of	false	killer
whale	(Pseudorca	crassidens)	vocalizations

ARTICLE		in		THE	JOURNAL	OF	THE	ACOUSTICAL	SOCIETY	OF	AMERICA	·	JANUARY	1999

Impact	Factor:	1.5	·	DOI:	10.1121/1.423945	·	Source:	PubMed

CITATIONS

41

READS

64

3	AUTHORS,	INCLUDING:

Eduardo	Mercado

University	at	Buffalo,	The	State	University	of	…

83	PUBLICATIONS			757	CITATIONS			

SEE	PROFILE

Herbert	Roitblat

OrcaTec

77	PUBLICATIONS			1,880	CITATIONS			

SEE	PROFILE

Available	from:	Herbert	Roitblat

Retrieved	on:	28	February	2016

https://www.researchgate.net/publication/13429327_The_neural_network_classification_of_false_killer_whale_Pseudorca_crassidens_vocalizations?enrichId=rgreq-818b5e38-f104-4dd5-b4b4-9bc0bf46a55c&enrichSource=Y292ZXJQYWdlOzEzNDI5MzI3O0FTOjEzODk5NDk2NDc2NjcyMUAxNDEwMTUwMzkwNDM3&el=1_x_2
https://www.researchgate.net/publication/13429327_The_neural_network_classification_of_false_killer_whale_Pseudorca_crassidens_vocalizations?enrichId=rgreq-818b5e38-f104-4dd5-b4b4-9bc0bf46a55c&enrichSource=Y292ZXJQYWdlOzEzNDI5MzI3O0FTOjEzODk5NDk2NDc2NjcyMUAxNDEwMTUwMzkwNDM3&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-818b5e38-f104-4dd5-b4b4-9bc0bf46a55c&enrichSource=Y292ZXJQYWdlOzEzNDI5MzI3O0FTOjEzODk5NDk2NDc2NjcyMUAxNDEwMTUwMzkwNDM3&el=1_x_1
https://www.researchgate.net/profile/Eduardo_Mercado3?enrichId=rgreq-818b5e38-f104-4dd5-b4b4-9bc0bf46a55c&enrichSource=Y292ZXJQYWdlOzEzNDI5MzI3O0FTOjEzODk5NDk2NDc2NjcyMUAxNDEwMTUwMzkwNDM3&el=1_x_4
https://www.researchgate.net/profile/Eduardo_Mercado3?enrichId=rgreq-818b5e38-f104-4dd5-b4b4-9bc0bf46a55c&enrichSource=Y292ZXJQYWdlOzEzNDI5MzI3O0FTOjEzODk5NDk2NDc2NjcyMUAxNDEwMTUwMzkwNDM3&el=1_x_5
https://www.researchgate.net/institution/University_at_Buffalo_The_State_University_of_New_York?enrichId=rgreq-818b5e38-f104-4dd5-b4b4-9bc0bf46a55c&enrichSource=Y292ZXJQYWdlOzEzNDI5MzI3O0FTOjEzODk5NDk2NDc2NjcyMUAxNDEwMTUwMzkwNDM3&el=1_x_6
https://www.researchgate.net/profile/Eduardo_Mercado3?enrichId=rgreq-818b5e38-f104-4dd5-b4b4-9bc0bf46a55c&enrichSource=Y292ZXJQYWdlOzEzNDI5MzI3O0FTOjEzODk5NDk2NDc2NjcyMUAxNDEwMTUwMzkwNDM3&el=1_x_7
https://www.researchgate.net/profile/Herbert_Roitblat?enrichId=rgreq-818b5e38-f104-4dd5-b4b4-9bc0bf46a55c&enrichSource=Y292ZXJQYWdlOzEzNDI5MzI3O0FTOjEzODk5NDk2NDc2NjcyMUAxNDEwMTUwMzkwNDM3&el=1_x_4
https://www.researchgate.net/profile/Herbert_Roitblat?enrichId=rgreq-818b5e38-f104-4dd5-b4b4-9bc0bf46a55c&enrichSource=Y292ZXJQYWdlOzEzNDI5MzI3O0FTOjEzODk5NDk2NDc2NjcyMUAxNDEwMTUwMzkwNDM3&el=1_x_5
https://www.researchgate.net/profile/Herbert_Roitblat?enrichId=rgreq-818b5e38-f104-4dd5-b4b4-9bc0bf46a55c&enrichSource=Y292ZXJQYWdlOzEzNDI5MzI3O0FTOjEzODk5NDk2NDc2NjcyMUAxNDEwMTUwMzkwNDM3&el=1_x_7


The neural network classification of false killer whale
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This study reports the use of unsupervised, self-organizing neural network to categorize the
repertoire of false killer whale vocalizations. Self-organizing networks are capable of detecting
patterns in their input and partitioning those patterns into categories without requiring that the
number or types of categories be predefined. The inputs for the neural networks were
two-dimensional characterization of false killer whale vocalizations, where each vocalization was
characterized by a sequence of short-time measurements of duty cycle and peak frequency. The first
neural network used competitive learning, where units in a competitive layer distributed themselves
to recognize frequently presented input vectors. This network resulted in classes representing typical
patterns in the vocalizations. The second network was a Kohonen feature map which organized the
outputs topologically, providing a graphical organization of pattern relationships. The networks
performed well as measured by~1! the average correlation between the input vectors and the weight
vectors for each category, and~2! the ability of the networks to classify novel vocalizations. The
techniques used in this study could easily be applied to other species and facilitate the development
of objective, comprehensive repertoire models. ©1998 Acoustical Society of America.
@S0001-4966~98!03312-8#
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INTRODUCTION

Quantifying a species’ repertoire is a fundamental ch
lenge in the study of animal vocalizations. Many attem
have been made to characterize the various sounds prod
by dolphin ~Delphinidae! species. However, little progres
has been made in developing objective, comprehensive
ertoire models. The development of such models is impor
because they can facilitate comparisons both within and
tween species, aiding in the development of functional m
els. Currently, the field lacks an objective method capable
classifying the entire vocal repertoire of a dolphin speci
Murray et al. ~1998! describe a method capable of charact
izing dolphin vocalizations that can be applied to all sign
types ~e.g., pulsed and continuous waveforms!. This paper
extends that work, demonstrating how self-organizing neu
networks can classify the repertoire of false killer wha
vocalizations.1

Techniques that categorize dolphin vocalizations ba
on objective and quantitative analysis methods have rece
been explored~e.g., Buck and Tyack, 1993; Dawson an
Thorpe, 1990; McCowan, 1995!. A dynamic time-warping
method was used by Buck and Tyack~1993! to assess the
similarity of bottlenosed dolphin~Tursiops truncatus!
whistles. The method used an algorithm that first extrac

a!Electronic mail: smurray@itd.ucdavis.edu
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the frequency contour of the whistles through fundamen
frequency analysis. The algorithm then performed a nonu
form time dilation to align the contours by minimizing th
total square difference between the observed contour a
reference contour. Finally, the algorithm computed a d
tance measure between the observed contour and a libra
reference contours. The observed contour was assigne
the closest reference contour. The technique was der
from speech recognition approaches~e.g., Itakura, 1975!,
and assumed that two whistles with similar contour sha
were the same, despite any differences in absolute lengt
the vocalization.

McCowan ~1995! made similar assumptions abo
which features are most important in whistle analysis.
addition to generalizing across whistle length, she assum
that whistles that have been shifted up or down in abso
frequency, while maintaining the same ‘‘shape,’’ should
categorized as the same. Twenty measurements of peak
quency were taken to represent each whistle. The freque
measurements were used to generate a correlation ma
and principal component analysis was conducted using
correlation matrices. The factor scores from each data se
whistles were subjected toK-means cluster analysis to grou
whistles into clusters based on contour similarity. By usi
correlation matrices, the technique was able to clus
whistles that differed in absolute duration and frequency.
362604(6)/3626/8/$15.00 © 1998 Acoustical Society of America



ve
or
d

ed
d
to

wi

ly
u
in
d

t
ne
co
th
e
im
d
a
e
rk

e
r

e

re
s

in
r
ti

m
e
en
n
re
in
e

r t
ab
w
ea

d

ar-
nd

oid.
uty-
pre-

rep-
-
cle
cle/
is not
pec-
ter

ow
so-
t af-
ea-

d
ors.
ting
ork
m-
f a
lly.
ela-
of

this
zed
tion
nt in

ns.
the
tion.
tive

m
at

iso-
he
the
re-
oxi-
ni-
s
s

ure
nfi-
he
Both of these techniques~Buck and Tyack, 1993 and
McCowan, 1995! are vast improvements over subjecti
judgment in that they ensure reliable classification perf
mance. However, these techniques have only been applie
whistle-type vocalizations and they may, in fact, be limit
in their ability to categorize other signal types. Both metho
only consider frequency information and do not take in
account changes in amplitude characteristics that occur
pulsed vocalizations.

A. Self-organizing neural networks

Neural networks are a promising technique in the ana
sis of animal vocalizations. Neural networks have been s
cessful at classifying a number of complex signal types,
cluding human speech~e.g., Kohonen, 1988; Huang an
Kuh, 1992! and dolphin biosonar echoes~e.g., Au and
Nachtigall, 1995; Roitblatet al., 1989!. The study reported
here employsunsupervised neural networks. Unlike super-
vised neutral networks~e.g., multilayer perceptrons!, unsu-
pervised networks require only weak assumptions about
number and type of potential categories. Unsupervised
works are capable of learning to detect regularities and
relations in their input, and adapting their responses to
input ~Demuth and Beale, 1993!. Unsupervised networks ar
called self-organizing because the organization is not
posed on them by an outside intelligent agent, but instea
learned as the outcome of the patterns to which they
exposed and the learning algorithm which adjusts th
weight structure. Generally, unsupervised neural netwo
partition a given data set into disjoint subsets~i.e., catego-
ries!, such that patterns in the same category are as alik
possible, and patterns in different clusters are as dissimila
possible~Mehrotra et al., 1997!. While most unsupervised
networks share this similar goal, they may differ in the sp
cifics of their mathematical implementation.

Self-organizing neural networks, similar to the one p
sented in this paper, have been used previously to clas
humpback whale song vocalizations~Walker et al., 1996!.
Time-frequency representations~spectrograms! of humpback
whale song units were used as inputs into a self-organiz
feature map. The network classified the song units simila
to human visual and aural impressions and traditional sta
tical clustering algorithms.

The technique presented by Walkeret al. ~1996! can be
applied to the entire song repertoire, but spectrograms
not be the best choice for neural network inputs. The tim
bandwidth tradeoff inherent in all spectrogram-like repres
tations can dramatically affect the representation of a sig
and how it is classified. Very different spectrograms can
sult from the same signal following only slight changes
the window size. For example, a signal can appear to b
continuous whistle with a large window size, and appea
be a series of short pulses with a small window. In the
sence of information about the animal’s integration windo
therefore, arbitrary window sizes and shapes may misl
categorization.

The inputs for the neural networks used in the stu
reported here were two-dimensional characterizations
3627 J. Acoust. Soc. Am., Vol. 104, No. 6, December 1998
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false killer whale vocalizations. Each vocalization was ch
acterized by its simultaneous modulations in duty cycle a
peak frequency~Murray et al., 1998!. The short-time duty-
cycle measure compares the signal to a continuous sinus
As the signal approaches a continuous sinusoid, the d
cycle measure begins to approach 1.00. Pulses are re
sented as lower duty-cycle values as a function of pulse
etition rate~Murray et al., 1998!. Consequently, high duty
cycle vocalizations are heard as whistles; lower duty-cy
values correspond to pulsed vocalizations. The duty cy
peak frequency representational scheme presented here
subject to the same constraints as spectrograms. With s
trograms, the time-frequency tradeoff can qualitatively al
the signal representation~or ‘‘type’’ !. For example, a pulsed
signal can appear to be continuous with the proper wind
size. Here, the time–frequency tradeoff only affects the re
lution of the peak frequency measurements and does no
fect the type of signal as represented by the duty cycle m
surements.

The first neural network used in this study usedcompeti-
tive learning, where units in a competitive layer distribute
themselves to recognize frequently presented input vect
The result of this network was a set of classes represen
typical patterns in the vocalizations. The second netw
used was a Kohonen feature map, which is similar to a co
petitive network in many respects. The additional aspect o
feature map is that the outputs are organized topologica
Similarity among patterns are mapped into closeness r
tionships on a grid, providing a graphical organization
pattern relationships~Dayhoff, 1990!.

The primary advantages to the techniques used in
study are that all emitted vocalizations were characteri
using a single method, and the outputs of the characteriza
were organized into patterns based on the features prese
the vocalizations. Both types of neural networks~competi-
tive and Kohonen feature map! require fewa priori assump-
tions regarding the categorical structure of the vocalizatio
Instead, the networks search for correlational structure in
data and form categories around these centers of correla
Both networks were used in order to contrast their respec
outputs.

I. METHODS

The 500-vocalization data set used in Murrayet al.
~1998! was used for this study. The vocalizations were fro
two false killer whales, one male and one female, located
Sea Life Park, Oahu, Hawaii. Recordings were made by
lating each animal in a distant portion of its tank while t
other animal remained behind a gate in another portion of
tank. The minimum distance between the animal being
corded and the other animal behind the gate was appr
mately 30 m. While recording, the trainer positioned the a
mal’s melon~forehead region of the animal from which it i
believed sound emanates! underwater so that its head wa
about 1–2 m away from the hydrophone. This proced
ensured very high signal-to-noise ratios, as well as co
dence concerning the identity of the animal making t
sounds~Murray et al., 1998!.
3627Murray et al.: Neural network classification
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All sounds were recorded with a Sony digital audio-ta
recorder~DAT!, TCD-D8, which uses a sampling rate
44.1 kHz, for a frequency bandwidth to 22 kHz. A hydr
phone~custom-built by W. Au! with a sensitivity of2185
dB and a bandwidth to 200 kHz was used for all recordin
Using a quasirandom procedure, 500 vocalizations were c
sen for analysis and digitized onto a PC using
SoundBlaster-32 sound card.

A single vocalization was defined as an uninterrupted~in
time! sound emission and could encompass multiple so
‘‘types’’ ~e.g., a whistle and pulse train!. The data set in-
cluded a random sample of 250 vocalizations from each
the two false killer whales. Each vocalization was sequen
into a series of short-duration~512 point—approximately
11.6 ms! nonoverlapping time windows and described alo
two dimensions: duty cycle and peak frequency. Duty cy
refers to the percentage of time a signal is ‘‘on’’ relative
the total length of the signal and in this context is relative
the 512-point window length. The duty cycle algorithm a
signed a value between 0.0~no signal—e.g., an interpuls
interval! to 1.00 ~a continuous signal—e.g., a whistle!. In
this way, the duty-cycle measure gave an approximation
the type of waveform~e.g., pulsed versus continuous! within
each time window.

The characterization vectors~duty cycle and peak fre
quency! for each vocalization served as the inputs into
self-organizing, competitive neural network and a tw
dimensional, self-organizing feature map. The input vect
for the networks must have the same number of eleme
therefore, the characterization vectors for each vocaliza
were sampled 30 times at regular intervals. The average
ration of each vocalization was 506 ms (s.d.5761 ms),
meaning that most vocalizations had approximately 40 w
dows. The use of 30 samples was arbitrary, but prelimin
analysis demonstrated it to be sufficient to capture the
namics of most signals. When pulse trains were analyzed
zero elements~representing interpulse intervals! and nonzero
elements ~representing individual pulses! were sampled
separately. This was done to maintain the same relative s
ing of zero and nonzero elements in the vectors.

Before presentation to the neural network, the input v
tors were scaled toz scores, using the grand mean and st
dard deviation over all signals. The mean for the duty-cy
values was 0.46 (s.d.50.34) and the mean for peak fre
quency was 7122 Hz (s.d.52687 Hz). Signal vectors wer
then normalized to unit length by dividing each vector by
length, meaning that the input vectors lay on a unit hyp
sphere. The input values were normalized because the n
network algorithm used maximum dot product as a simila
measure. If two vectors are of unit length, the dot produc
equal to the cosine of the angle between the two vectors~i.e.,
a ‘‘meaningful’’ measure of similarity!. Normalizing to unit
length removes magnitude information from the inputs an
important to consider when interpreting the results. For
ample, after normalization ofz-scored feature vectors, a win
dow which was 0.1 standard deviations above the mea
frequency and of mean duty cycle,@0.1 0#, would be treated
as equivalent to a window that was 3 s.d. above the mea
frequency and of mean duty cycle,@3 0#. ~After normaliza-
3628 J. Acoust. Soc. Am., Vol. 104, No. 6, December 1998
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tion both vectors equal@1 0#.! What is preserved after nor
malization is the dynamics, or the change of the signal acr
time relative to the mean.

The inputs for the neural networks were a combinat
of duty cycle and peak frequency values. Input vectors w
constructed by concatenating the two 30-element vectors
a single 60-element vector. To test the reliability of the c
egories formed by the network, a subset of 250 input vec
was chosen randomly from the set of 500 to serve as a tr
ing set. These vectors served as inputs to train the netw
The remaining 250 vectors served as a test set. The pe
mance of the network developed with the training set w
compared with the test set. The neural networks were im
mented using custom script-code accessing functions
MATLAB’ s Neural Network Toolbox~The MathWorks, Inc.!.

II. COMPETITIVE NETWORK

The units in the competitive network were initialized
random weight vectors with the number of elements in e
weight vector equal to the number of elements in the in
vectors~i.e., 60 elements!. An input vector was presented t
the network and the angle between the input vector and e
of the unit’s weight vectors was computed. The unit with t
smallest angular difference from the input vector was
‘‘winner.’’ The weights of the winning unit were adjusted i
the direction of the input vector. The size of the adjustm
was controlled by a learning-rate parameter. Therefore, w
the same input vector was presented again, the winning
was more likely to win and its values were adjusted close
the input vector. The weight vectors of each of the units
the end of training, represented prototypes or category ‘‘c
troids.’’

To summarize, the competitive network worked as f
lows:

~1! Apply an input vectorX.
~2! Calculate the angular distanceDj betweenX and the

weight vectorsW j of each unit. Since normalized input
and weight vectors were used, the cosine of the an
betweenX andW equals the dot product:

Dj5X–W j

~3! The unit that has the weight vector closest toX ~i.e., the
largest dot product! is declared the winner. The winner’
weights are adjusted in the direction ofX by the for-
mula:

W j@n11#5W j@n#1a~X2W j@n# !,

wheren indicates the iteration number, anda the learn-
ing rate.

~4! Perform steps~1! through~3!, cycling through each inpu
vector.

After training, each of the input vectors was assigned
the unit ~category! whose weight vector~category centroid!
was closest. The performance of the network was asse
by calculating the average cosine of the angle between e
unit’s weight vector and the input vectors assigned to it.
3628Murray et al.: Neural network classification
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other words, the degree to which each input vector was
lated to its respective unit’s weight vector was measured

A. Results

The number of units in a winner-take-all network dete
mines the maximum number of potential categories. T
number of units ultimately used in training the network w
arrived at through a trial-and-error procedure by first start
with a large number of units—i.e., many more than reas
ably suspected categories—and then reducing the num
Forty units~possible categories! were first used. Presentatio
of the training vectors was iterated 20 000 times at learn
rates of 0.05 and repeated with a rate of 0.10. In both ca
only five of the units learned—i.e., showed adjustments
their values. The number of units was subsequently redu
by one-half ~from 20 to 10!. In all cases, only five units
adjusted their weights.

The network was trained with five units at a learni
rate of 0.10 for 10 000 iterations. The weight vectors fro
each of the five units after training are shown in Fig. 1. T
x axis represents each of the 60 elements of the vectors
the y axis represents normedz-score values. Zero represen
the mean; values above and below zero represent devia
from the mean. The first 30 elements representing duty-c
values are shown above the second 30 elements represe
peak frequency.

Looking at weight vector 1~W1! in Fig. 1, the first 30
elements~representing duty cycle! are constant and of rela
tively high value. The representation of peak frequen
~dashed line! is ascending. This vector represents ascend
whistle vocalizations. The false killer whales used in th
study frequently made short-duration ascending whist
these vocalizations are one of the most salient vocalizat
when listening to the animals in almost any behavioral c
text. Because these vocalizations were so commonly
served, the observance of a weight vector that represe
these vocalizations gave validity to the performance of
neural network.

Looking at weight vector 2~W2! in Fig. 1, the first 30
elements~representing duty cycle! begin at relatively high
values, then approximately halfway through~element 13 or
14! drop in value. This weight vector seems to represent
whistle→pulse-train vocalizations. These vocalizations be
as whistles, then switch to what sounds to us like a click tr
or a rapidly pulsed vocalization~Murray et al., 1998!. Look-
ing at elements 31 to 60~representing peak frequency!, it
appears that during the high duty-cycle portion~i.e., the
whistle!, peak frequency is ascending. During the pulse-tr
portion, the peak frequency of the end of the whistle is ma
tained at a relatively constant level throughout the durat
of the pulse train, similar to the examples presented in M
ray et al. ~1998!.

Weight vector 3 is straightforward to interpret. Both th
duty cycle~first 30 elements! and the peak frequency~second
30 elements! are relatively constant and at low values. Th
vector is the result of low-frequency pulse trains. Weig
vector 4 has a similarly straightforward interpretation. It h
intermediate duty-cycle values and low peak-frequency v
ues, and is likely the result of lower frequency, rapid
3629 J. Acoust. Soc. Am., Vol. 104, No. 6, December 1998
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pulsed vocalizations. Weight vector 5 has low duty-cyc
values and high peak-frequency values and seems to re
sent high-frequency pulse trains.

The performance of the neural network was evalua
by first calculating how much of the input space was a
counted for by each weight vector. The cosine of the an
between each input vector used for training and each un
weight vectors were calculated. The input vectors were
signed to the category represented by the unit with the c
est weight vector. Thus, there were five clusters of in
vectors corresponding to the five units. A total of 94 of t
training vectors clustered with the weight vector of unit
~W1!, 25 with W2, 43 with W3, 27 with W4, and 61 with
W5.

The average similarity~as measured by angular dis
tance! across all training vectors and their respective cate
ry’s weight vector was 0.72. Additionally, the average sim
larity was calculated between the members of each cate
and the four ‘‘unassociated’’ units. The average betwe
category similarity was20.11. The results reflect the gener
goal of an unsupervised network—to partition a data set i
disjoint subsets~i.e., categories!, such that patterns in the
same category are as alike as possible, and patterns in d
ent clusters are as dissimilar as possible. Referring to Tab
the average within-category similarity is shown in the ma
diagonal. The other cells in the table show between-categ
similarity.

The 250 vectors not used to train the network served
a novel test set. Each member of the test set was clust
with the nearest weight vector from each of the five units
total of 93 of the test vectors clustered with W1, 20 with W
41 with W3, 28 with W4, and 68 with W5. The distributio
of vocalizations among the weight vectors in the test se
closely aligned with the training set, suggesting represe
tive samples for both the training and testing data set. T
average similarity between each test input vector and
unit’s respective weight vector was 0.69. Performance of
network with the test set~0.69! is comparable to that of the
network using the training set~0.72!. The average between
category similarity for the test set was20.11 ~see Table II!.

The competitive neural network recognized five ma
categories in the false killer whale vocalizations analyz
The within-category similarity was high, with an averag
correlation of 0.72. Additionally, the categories learned w
the training set were able to be generalized to the novel
set, suggesting that the categories are reliable. The com
tive network approximates the minimum number of categ
ries present in the input patterns. The next network use
Kohonen feature map, provides a different representation
the vocalizations.

III. FEATURE MAP

The two-dimensional feature map used in this study w
similar to the competitive network described above. Ho
ever, the competitive units were ordered topologically in
two-dimensional square grid. Each unit had neighbors on
grid where a neighborhood of diameter 1 included a speci
unit and its immediately adjacent neighbors. A neighborho
3629Murray et al.: Neural network classification



own with

whistle
FIG. 1. The weight vectors of each of the five units after training with duty-cycle and peak-frequency inputs. The 60-element weight vectors are sh
the first 30 elements~duty cycle! plotted above the second 30 elements~peak frequency!. Zero~y axis! represents the grand mean for each dimension~normed
z scores!. The weight vector from unit 1~W1! has relatively high duty-cycle values and ascending peak frequency. This unit represents ascending
vocalizations. The other units can be interpreted similarly.
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of diameter 2 included the diameter 1 units and their imm
diately adjacent neighbors. The feature map in this st
used a 535 grid.

The feature map differed from the competitive netwo
in terms of which units had their weights updated. In ad
tion to updating the winner, the feature map updated
3630 J. Acoust. Soc. Am., Vol. 104, No. 6, December 1998
-
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winner’s neighbors. The result was that neighboring un
tended to have similar weight vectors~i.e., represent similar
portions of the input space!. During the initial stage of train-
ing, the neighborhood size encompassed the entire 535 grid
~i.e., each unit adjusted its weights in response to each in
vector! and was decreased linearly so that it reached a m
3630Murray et al.: Neural network classification
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mum of 1 after one-quarter of the training cycles and
mained there for the rest of training. This allowed the en
feature map to move initially in the direction of the inp
space, then, as the neighborhood size decreased to 1, the
ordered itself topologically over the presented input vecto

The first three steps outlined above for the competit
network apply to the feature map. The following are t
additional properties of the feature map.

~1! The winning unit,Wc , is designated as the center of
group of units~i.e., a neighborhood! that lie within a
distanceD ~neighborhood size! from Wc .

~2! Train this group of units according to the formula:

W j@n11#5W j@n#1a~X2W j@n# !

for all weight vectors within a distanceD of Wc .

As the training progresses, the values ofD anda ~the learn-
ing rate! are gradually reduced.

By assessing the number of input vectors that activa
~clustered with! each unit, it was possible to examine th
distribution of the input space across the topology rep
sented by the network. Similar to the competitive network
set of 250 vectors, randomly selected from the total poo
500, were used as input vectors for training. The remain
250 were used to test reliability. Reliability was measured
correlating the distributions across the topological map of
training vectors and the test vectors.

A. Results

The feature map was trained for 15 000 iterations a
learning rate of 0.15. The weight vectors after training
presented in Fig. 2. The first 30 elements in each plot re
sent duty-cycle values, and elements 31 through 60 repre
peak frequency. Row and column notation~row, column!,
will be used to refer to specific units on the grid in Fig. 2

TABLE I. The mean similarity/correlation between each cluster of the tra
ing set and each of the five unit’s weight vector. Within-category similarit
are in the main diagonal; all other cells show between-category similari
This table highlights the ability of the competitive neural network to fo
maximally distinct categories.

Weight 1 Weight 2 Weight 3 Weight 4 Weight 5

Cluster 1 0.81 0.06 20.58 0.45 20.70
Cluster 2 0.06 0.63 20.08 20.11 0.05
Cluster 3 20.53 20.08 0.70 0.07 0.33
Cluster 4 0.42 20.22 0.07 0.74 20.59
Cluster 5 20.67 0.07 0.33 20.61 0.74

TABLE II. The mean similarity/correlation between each cluster of the t
set and each of the five unit’s weight vector. When the trained networ
presented with novel vocalizations, very similar patterns of similar
dissimilarity are found as compared to the training set~Table I!.

Weight 1 Weight 2 Weight 3 Weight 4 Weight 5

Cluster 1 0.75 0.09 20.60 0.35 20.62
Cluster 2 0.07 0.59 20.05 20.07 0.01
Cluster 3 20.52 20.09 0.72 0.12 0.29
Cluster 4 0.41 20.11 0.04 0.68 20.58
Cluster 5 20.66 0.07 0.31 20.61 0.73
3631 J. Acoust. Soc. Am., Vol. 104, No. 6, December 1998
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Referring to Fig. 2, units~2,4!, ~2,5!, ~3,4!, and ~3,5!
~i.e., middle/right of grid! represent relatively high and con
stant duty cycles and gradually ascending peak frequenc
These weight vectors are similar to the weight vector of u
1 ~W1 in Fig. 1! in the competitive network and correspon
to ascending whistle vocalizations. Similarly, units~4,1!,
~4,2!, ~5,1!, and ~5,2! ~i.e., lower-left portion of the grid!
represent low duty-cycle, high-frequency vocalizations.
the upper-left portion of the grid, units~1,1!, ~1,2!, ~2,1!, and
~2,2!, represent whistle→pulse-train vocalizations. Thes
units are similar to unit 2~W2 in Fig. 1! of the competitive
network.

The distribution of the training-set input space across
topology of the network is shown in Fig. 3 as ‘‘training set
The input space is heavily distributed in the lower left~cor-
responding to high-frequency pulse trains! and middle right
~corresponding to ascending whistles! of the topology. The
distribution was also calculated for the novel test inputs a
is depicted in Fig. 3 as ‘‘test set.’’ The two distributions a
similar with a correlation of 0.89.

The categories developed by the feature map were c
sistent with those of the competitive neural network. Ma
of the patterns in the weight vectors that were seen in
competitive networks were evident in the feature map. A
ditionally, the input spaces in both the competitive and fe
ture map networks seemed to distribute themselves simila
For example, units representing constant/high duty cycle
ascending peak frequency~ascending whistles! attracted a
large percentage of the input space in both the competi
network and the feature map.

IV. DISCUSSION

Two types of neural networks were used to classify
vocalizations: a competitive network and a two-dimensio
feature map. Both networks were trained with a combinat
of duty-cycle and peak-frequency input values. The comp
tive network learned five different categories. The fact th
the network learned the two obvious categories—whis
and click trains, reflected by both high and low duty-cyc
weight vectors, respectively, attests to the validity of the n
work.

Based on interpretation of the five weight vectors fro
the competitive network, the main categories seem to be
cending whistles, low-frequency pulse trains, and hig
frequency pulse trains. The network also recognized
whistle→pulse-train transitions as a significant category~see
Fig. 1, W2!. The peak frequency of the high duty-cycle po
tion ~i.e., the whistle! of this category was ascending. Th
pulse-train component~low duty cycle! seemed to maintain
the peak frequency of the end of the whistle.

It is important to point out that the ability of the neur
network to learn these ‘‘combination’’ categories~categories
with both continuous-wave and pulsed components! was fa-
cilitated by the use of a measure of waveform shape.
cause of the aural and spectral distinctiveness of m
pulsed versus continuous sounds, vocalizations that pos
combinations may be arbitrarily separated into differe
components. Therefore, it is unlikely that the combinati
categories would have been arrived at through subjec

-
s
s.

t
is
/
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FIG. 2. The topology of the input space using duty-cycle and peak-frequency values. Thex axis in each plot represents the element number of each we
vector. The first 30 elements represent duty cycle and the elements 31 to 60 represent peak frequency. They axis represents scaled and normalized duty-cy
and peak-frequency values, where zero represents the grand mean. Units on the right/middle side of the topology have relatively high duty cycle an
peak frequency~ascending whistles!. Units in the lower-left portion have low duty cycle and relatively high peak frequency~high-frequency pulse trains!.
Also, units that are close to each other have similar-looking weight vectors.
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classification techniques such as aural analysis of vis
analysis of spectrograms. For example, if aural analysis w
used, a whistle that suddenly changed into a pulse train~see
Murray et al., 1998, for examples! might be classified into
two separate vocalizations: a whistle immediately follow
by a pulse train. However, with the short-time duty-cyc
measure, the continuity of the vocalizations was preserv
The use of an objective measure of signal type allows fo
different definition of a single vocalization: an uninterrupt
~in time! sound emission as opposed to a certain subjec
class of vocalization~e.g., whistle or pulse train!. Such a
definition is likely more functionally relevant because it
defined by the vocalizing animal and not by the subject
judgment of a human listener.

The categories developed by the self-organizing fea
map complemented the results obtained with the compet
network. The types of weight vectors observed in the co
petitive network were also seen in the feature map. Additi
ally, the input distribution patterns~i.e., input clustering!
were very similar in both the competitive and feature m
networks. Both types of networks demonstrated that the s
organizing approach, using the two types of inputs~duty
cycle and peak frequency!, is a very effective way of catego
rizing dolphin vocalizations.

Though the results of the two types of networks we
complementary, each has its own advantages. The com
tive network was effective in finding the minimum numb
3632 J. Acoust. Soc. Am., Vol. 104, No. 6, December 1998
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of potential categories in the data set. Additional charac
istics were revealed by the feature map, such as the rela
distribution of the input space~through category redundancy!
and the topological relationships between categories.

The neural network classification scheme presented h
is easily amenable to different types of acoustic signal r
resentations. For example, there may be other relevan
mensions, such as signal duration, which may be impor
to include in future implementations of these networks. Lik
wise, some investigators may only want to consider a cer
duty-cycle category~e.g., whistles! in their analysis. Such
networks could limit their inputs to relevant spectral featu

FIG. 3. The distribution of the duty-cycle and peak-frequency input sp
over the topology depicted in Fig. 2. Most of the input vectors of both
training set and test set clustered in the right-middle~ascending whistles!
portion of the topology and in the lower-left portion~pulse trains!. The two
distributions have a Pearson’s correlation of 0.89, meaning that the d
bution of the input space in the trained network is generalizable to no
vocalizations.
3632Murray et al.: Neural network classification
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~e.g., fundamental frequency!. Overall, the networks are ver
flexible, and it is ultimately up to the investigator to dete
mine which inputs are most relevant to his or her particu
classification task.

In summary, the techniques used in this study provid
unique and objective method for classifying cetacean vo
izations. Forming simple categories using self-organiz
networks can facilitate comparisons between different s
cies and different behavioral contexts, as well as aid in
development of functional models of cetacean vocalizatio
The ability of self-organizing networks to ‘‘search’’ for in
herent relationships in the data and form categories base
those relationships makes them well-suited for classify
animal vocalizations.
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