A few words on 'chaos':

- Sensitive dependence on initial conditions.
 * We saw this with the small cube of particles in the Lorenz vector field
 * Any small errors will be amplified (exponentially) in time

- Example: Double Pendulum Demo.
 * Very simple physical system that exhibits chaos
 * Four dimensional phase space: \(\frac{d}{dt} \theta_1 = \ldots\)
 trying to fit into
 \(\frac{d}{dt} \theta_2 = \ldots\)
 \(\frac{d}{dt} \theta_3 = \ldots\)
 \(\frac{d}{dt} \theta_4 = \ldots\)

- Chaos may be very challenging for numerical integration
 * Most integrators minimize local error at every time step
 However, even very small \((10^{-16})\) errors will grow rapidly in a chaotic system.

Best strategy
known
today.

Interestingly,
RK-78 is
approximately
symplectic...

* Alternative: instead of minimizing local errors, try to preserve conserved quantities:
 - Conserve energy \(\Rightarrow\) 'Symplectic' integrator
 - Make Lagrange's equations as close \(\Rightarrow\) 'Variational' integrator
to satisfied as possible
Example: predicting motion of the planets

* one of the oldest problems in physics/mathematics
* motivation for Poincare to discover chaos in first place.

Aside. \(\Rightarrow\) (also why Gauss discovered FFT in 1805),
(\textit{even two years before Fourier work})
(150 years before Cooley & Tukey).

* Jet Propulsion Laboratory (JPL)
 Development Ephemeris

DE 431: (2013) 13201 BC \(\Rightarrow\) AD 17191

Example: Double Gyre ... model of ocean basin mixing,

* show demo Keynote
* show code.