Sample Solutions for Practice Problems for Final (Dec. 12, 2:30-4:20)

1. For an \(n \times n \) matrix \(A \), the operator norm corresponding to the \(1 \)-norm and the \(\infty \)-norm for \(n \)-vectors is \(\max_{\|v\|_p=1} \|Av\|_p \), \(p = 1, \infty \). Recall that the \(1 \)-norm of a matrix is the maximum absolute column sum and the \(\infty \)-norm of a matrix is the maximum absolute row sum. Determine the smallest constant \(C_{1,\infty} \) for which \(\|A\|_1 \leq C_{1,\infty} \|A\|_\infty \) for all \(A \in \mathbb{C}^{n \times n} \) and the smallest constant \(C_{\infty,1} \) for which \(\|A\|_\infty \leq C_{\infty,1} \|A\|_1 \) for all \(A \) in \(\mathbb{C}^{n \times n} \). In each case, show that the inequality holds for all \(A \) and construct a (nonzero) matrix \(A \) for which equality holds.

What (more general) theorem guarantees the existence of such constants?

\[
\|A\|_1 \leq n \|A\|_\infty, \text{ since if the } j\text{th column of } A \text{ is the one with the maximum absolute value, and if } a_{ij} \text{ is the entry in that column with largest absolute value, then } \|A\|_1 = \sum_{k=1}^{n} |a_{kj}| \leq n |a_{ij}|, \text{ while } \|A\|_\infty \geq \sum_{k=1}^{n} |a_{ik}| \geq |a_{ij}|.
\]

Therefore \(\|A\|_1 \leq n \|A\|_\infty \). We will get equality if \(A \) has only one nonzero column and each entry in that column has the same absolute value, say, 1. Then \(\|A\|_1 = n \) and \(\|A\|_\infty = 1 \).

We get the same constant in the other direction, \(\|A\|_\infty \leq n \|A\|_1 \). Since \(\|A\|_\infty = \|A^T\|_1 \) and \(\|A\|_1 = \|A^T\|_\infty \), we can just apply the above to \(A^T \).

The theorem that guarantees the existence of such constants is the one that says: In a finite dimensional vector space, all norms are equivalent. The space of \(n \) by \(n \) matrices is a vector space of dimension \(n^2 \).

2. Let \(V = P_1(\mathbb{R}) \) (i.e., the space of polynomials of degree one or less over the reals). For \(p \in V \), define elements \(f \) and \(g \) of \(V^* \) by

\[
f(p) = \int_0^1 p(t) \, dt, \quad g(p) = \int_0^2 p(t) \, dt.
\]

Prove that \(\{f, g\} \) is a basis for \(V^* \) and find a basis of \(V \) for which it is the dual basis.

Since \(\dim(V^*) = \dim(V) = 2 \), it suffices to show that \(f, g \in V^* \) and \(f \) and \(g \) are linearly independent. It is clear that \(f, g \in V^* \) since \((\forall p, q \in V)(\forall \alpha, \beta \in \mathbb{R}) \) and for \(c = 1, 2 \),

\[
\int_0^c (\alpha p(t) + \beta q(t)) \, dt = \alpha \int_0^c p(t) \, dt + \beta \int_0^c q(t) \, dt.
\]

To see that \(f \) and \(g \) are linearly independent, note that \(f(1) = \int_0^1 1 \, dt = 1 \) and \(g(1) = \int_0^2 1 \, dt = 2 \), so if \(\alpha f + \beta g = 0 \), then \(\alpha = -2\beta \). However, \(f(t) = \int_0^1 t \, dt = \frac{1}{2} \) and \(g(t) = \int_0^2 t \, dt = 2 \), so if \(\alpha f + \beta g = 0 \), \(\alpha = -4\beta \). These two conditions imply that \(\alpha = \beta = 0 \), so \(f \) and \(g \) are linearly independent and hence form a basis for \(V^* \).
To find a basis of \(V \) to which \(\{f, g\} \) is dual, look for functions \(a + bt \) and \(c + dt \) such that

\[
\begin{align*}
f(a + bt) &= a + \frac{1}{2}b = 1 \quad f(c + dt) = c + \frac{1}{2}d = 0 \\
g(a + bt) &= 2a + 2b = 0 \quad g(c + dt) = 2c + 2d = 1.
\end{align*}
\]

It is easy to see that the solution of these equations is \(a = 2, b = -2, c = -\frac{1}{2}, d = 1 \). Hence the required basis is \(\{2 - 2t, -\frac{1}{2} + t\} \).

Let \(T_n(x) = \cos(n\theta) \), where \(\cos(\theta) = x \) and \(0 \leq \theta \leq \pi \). We wish to show that

\[
\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1 - x^2}} \, dx = 0, \quad \text{if} \quad m \neq n.
\]

Make the change of variable \(x = \cos(\theta) \). Then \(dx = -\sin(\theta) \, d\theta \), \(\sqrt{1 - x^2} = \sin \theta \), and as \(x \) goes from \(-1\) to \(1\), \(\theta \) goes from \(0\) to \(\pi\). Hence the above integral becomes

\[
-\int_{0}^{\pi} \frac{\cos(n\theta) \cos(m\theta)}{\sin \theta} \sin(\theta) \, d\theta = -\int_{0}^{\pi} \cos(n\theta) \cos(m\theta) \, d\theta.
\]

We know from a homework exercise (Exercise 7.3, p. 183) that the functions \(\{\sqrt{1/\pi}, \sqrt{2/\pi} \cos(n\theta), n = 1, 2, \ldots \} \) are an orthonormal basis for \(L^2[0, \pi] \). Hence

\[
\|T_0\| = \left(\int_{0}^{\pi} 1^2 \, dx \right)^{1/2} = \sqrt{\pi},
\]

\[
\|T_n\| = \left(\int_{0}^{\pi} \cos^2(n\theta) \, d\theta \right)^{1/2} = \sqrt{\pi/2}, \quad n = 1, 2, \ldots.
\]

4. Let \(f(t) = |t| \) for \(|t| \leq \pi \) be a continuous \(2\pi \)-periodic function.

(a) Compute the Fourier coefficients of \(f \).

\[
\hat{f}(0) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} |t| \, dt = \frac{2}{\sqrt{2\pi}} \int_{0}^{\pi} t \, dt = \frac{\pi^2}{\sqrt{2\pi}}.
\]

For \(n \neq 0 \),

\[
\hat{f}(n) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} |t| e^{-int} \, dt = \frac{1}{\sqrt{2\pi}} \left[-\int_{-\pi}^{0} te^{-int} \, dt + \int_{0}^{\pi} te^{-int} \, dt \right].
\]

Using integration by parts with \(u = t, \, dv = e^{-int} \, dt \), this becomes

\[
\hat{f}(n) = \frac{1}{\sqrt{2\pi}} \left[-t \left. \frac{e^{-int}}{n} \right|_{-\pi}^{0} + \int_{-\pi}^{0} \frac{i}{n} e^{-int} \, dt + \int_{0}^{\pi} \frac{i}{n} e^{-int} \, dt \right].
\]
\[
= \frac{1}{\sqrt{2\pi}} \left[-\pi \frac{i e^{in\pi}}{n} - \frac{1}{n^2} e^{-int} \left|_{-\pi}^{0} \right. + \pi \frac{i e^{-in\pi}}{n} + \frac{1}{n^2} e^{-int} \left|_{0}^{\pi} \right. \right]
\]
\[
= \frac{1}{\sqrt{2\pi}} \left[-\frac{1}{n^2} (1 - e^{in\pi}) + \frac{1}{n^2} (e^{-in\pi} - 1) \right]
\]
\[
= \begin{cases}
0 & \text{if } n \text{ is even} \\
-4/(\sqrt{2\pi}n^2) & \text{if } n \text{ is odd}
\end{cases}
\]

(b) Use Parseval’s identity to prove that
\[
\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.
\]

Since
\[
\int_{-\pi}^{\pi} |t|^2 \, dt = 2 \int_{0}^{\pi} t^2 \, dt = \frac{2\pi^3}{3},
\]
it follows from Parseval’s identity and part (a) that
\[
\frac{2\pi^3}{3} = \frac{\pi^3}{2} + 2 \sum_{n=1,3,\ldots} \frac{8}{\pi n^4}, \quad \text{or}, \quad \sum_{n=1,3,\ldots} \frac{1}{n^4} = \frac{\pi^4}{96}.
\]

Now,
\[
\sum_{n=2,4,\ldots} \frac{1}{n^4} = \sum_{j=1}^{\infty} \frac{1}{(2j)^4} = \frac{1}{16} \sum_{j=1}^{\infty} \frac{1}{j^4},
\]
and also
\[
\sum_{n=2,4,\ldots} \frac{1}{n^4} + \sum_{n=1,3,\ldots} \frac{1}{n^4} = \sum_{j=1}^{\infty} \frac{1}{j^4}.
\]
It follows that
\[
\frac{\pi^4}{96} = \frac{15}{16} \sum_{j=1}^{\infty} \frac{1}{j^4}, \quad \text{or}, \quad \sum_{j=1}^{\infty} \frac{1}{j^4} = \frac{\pi^4}{90}.
\]

5. If \(f(t) \) is a continuous \(2\pi \)-periodic function, show that the differential equation \(x''(t) + x(t) = f(t) \) has a \(2\pi \)-periodic solution if and only if
\[
\int_{0}^{2\pi} f(t) \cos(t) \, dt = 0 \quad \text{and} \quad \int_{0}^{2\pi} f(t) \sin(t) \, dt = 0.
\]

If \(x(t) \) is \(2\pi \)-periodic then it has a Fourier series expansion,
\[
\frac{a_0}{2} + \sum_{j=1}^{\infty} a_j \cos(jt) + \sum_{j=1}^{\infty} b_j \sin(jt).
\]
If \(x(t) \) satisfies the differential equation, then it is in \(C^2[-1,1] \) since \(f \) is continuous, and hence its Fourier series can be differentiated twice term by term:
\[
x''(t) = -\sum_{j=1}^{\infty} a_j j^2 \cos(jt) - \sum_{j=1}^{\infty} b_j j^2 \sin(jt).
\]
Inserting the Fourier series for \(x \) and \(x'' \) into the differential equation we find

\[
f(t) = \frac{a_0}{2} + \sum_{j=1}^{\infty} a_j (1 - j^2) \cos(jt) + \sum_{j=1}^{\infty} b_j (1 - j^2) \sin(jt),
\]

which is the unique Fourier series expansion of \(f \). Since the coefficient of \(\cos(t) \) is 0 (1 - \(j^2 \) for \(j = 1 \)) and that of \(\sin(t) \) is 0, this implies that

\[
\int_{0}^{2\pi} f(t) \cos(t) \, dt = \int_{0}^{2\pi} f(t) \sin(t) \, dt = 0. \tag{1}
\]

Conversely, if \(f \) satisfies (1), then its Fourier series has the form

\[
\frac{c_0}{2} + \sum_{j=2}^{\infty} c_j \cos(jt) + \sum_{j=2}^{\infty} d_j \sin(jt).
\]

If we set \(a_0 = c_0 \), \(a_j = c_j/(1 - j^2) \), \(j = 2, 3, \ldots \), \(b_j = d_j/(1 - j^2) \), \(j = 2, 3, \ldots \), and let \(a_1 \) and \(b_1 \) be arbitrary, then \(x(t) = \frac{a_0}{2} + \sum_{j=1}^{\infty} a_j \cos(jt) + \sum_{j=1}^{\infty} b_j \sin(jt) \) is a 2\(\pi \)-periodic solution since it is a sum of 2\(\pi \)-periodic terms and satisfies \(x''(t) + x(t) = f(t) \), as shown above.

6. Consider an **overdetermined** system of linear equations \(Ax \approx b \), where \(A \) is an \(m \) by \(n \) matrix, \(m > n \), \(b \) is a given \(m \)-vector, and we seek an \(n \)-vector \(x \) for which \(\| b - Ax \|_2 \) is as small as possible. This is called a **linear least squares** problem.

 (a) Assume that \(A \) has rank \(k < n \). Let \(q_1, \ldots, q_k \) be an orthonormal basis for \(\text{range}(A) \). Let \(Q \) be the \(m \) by \(k \) matrix whose columns are \(q_1, \ldots, q_k \). Show that the unique closest vector to \(b \) in \(\text{range}(A) \) is \(QQ^*b \).

 From the projection theorem, the unique closest vector to \(b \) in \(\text{range}(A) \) is the vector \(y_* \) in \(\text{range}(A) \) for which \(b - y_* \) is orthogonal to \(\text{range}(A) \).

 Since the columns of \(Q \) span the range of \(A \), the vector \(QQ^*b \) is in the range of \(A \), and since the columns of \(Q \) are orthonormal, \(Q^*(b - QQ^*b) = Q^*b - (Q^*Q)Q^*b = Q^*b - IQ^*b = 0 \).

 (b) Where would the Gram-Schmidt process break down if one tried to use it to orthonormalize the columns of \(A \)?

 When you encountered a column, say, column \(j \) that was a linear combination of previous columns, you would find that the vector

 \[
 \tilde{q}_j = a_j - \sum_{i=1}^{j-1} \langle q_i, a_j \rangle q_i
 \]

 would be \(0 \). Hence when you tried to normalize to get \(q_j = \tilde{q}_j/\|\tilde{q}_j\| \), it would break down.

 (c) Show that \(A \) can be written in the form \(A = QR \), where \(Q \) is the \(m \) by \(k \) matrix described in (a) and \(R \) is a \(k \) by \(n \) matrix with \(r_{ij} = 0 \) whenever \(i > j \). Describe all solutions \(x \) of the least squares problem.
As long as the columns of \(A \) are linearly independent, you can run the Gram-Schmidt process to find the columns of \(Q \) and the entries of \(R \):

\[
r_{ij} = \langle q_i, a_j \rangle \quad \text{for} \quad i < j, \quad r_{jj} = \| \tilde{q}_j \|.
\]

If \(\tilde{q}_j = 0 \), then set \(r_{ij}, \ i < j \) as usual, but do not add a new column to \(Q \), since now we can write

\[
(a_1, \ldots, a_{j-1}, a_j) = (q_1, \ldots, q_{j-1}) \begin{pmatrix}
 r_{11} & \ldots & r_{1,j-1} & r_{1j} \\
 \vdots & \ddots & \vdots & \vdots \\
 r_{j-1,j-1} & \ldots & r_{j-1,j} & r_{jj}
\end{pmatrix}.
\]

Now continue the Gram-Schmidt process with \(a_{j+1} \). Orthogonalize it against \(q_1, \ldots, q_{j-1} \) and store the coefficients \(\langle q_i, a_{j+1} \rangle \) in rows 1 through \(j - 1 \) of column \(j + 1 \) of \(R \). If the resulting vector \(\tilde{q}_{j+1} \) is nonzero, then normalize it and append the normalized vector \(q_{j+1} \) to \(Q \) to get an \(m \) by \(j \) matrix with orthonormal columns and set \(r_{j,j+1} = \| \tilde{q}_{j+1} \| \). If \(\tilde{q}_{j+1} = 0 \), do not append any column to \(Q \) and just move on to \(a_{j+2} \). Continuing in this way, you will get an \(n \) by \(k \) matrix \(Q \) since \(\text{rank}(A) = k \) and a \(k \) by \(n \) matrix \(R \) with \(r_{ij} = 0 \) for \(i > j \).

Since \(QQ^* b \) is in the range of \(A \), the equation \(Ax = QQ^* b \) has at least one solution, and since \(QQ^* b \) is the closest vector to \(b \) in the range of \(A \), any solution to this equation is a solution to the least squares problem. We can write this equation as \(QRx = QQ^* b \), and any \(x \) that satisfies this equation must also satisfy \(Q^* QRx = Q^* QQ^* b \), or, \(Rx = Q^* b \). Conversely, any solution of \(Rx = Q^* b \) satisfies \(QRx = QQ^* b \), so the solutions of the least squares problem are the solutions of \(Rx = Q^* b \).