Sample Solutions to Practice Problems for Midterm (Nov. 2, 2011)

1. Write down the second degree Bernstein polynomial approximation to \(f(x) = |x| \) on \([-1, 1]\).

First map the interval \([-1, 1]\) to \([0, 1]\) by setting \(y = (x + 1)/2 \), so that \(x = 2y - 1 \). Define \(g(y) = f(x) = |2y - 1| \), and find \(B_2(y; g) \):

\[
B_2(y; g) = g(0) \cdot (1-y)^2 + g(1/2) \cdot 2y(1-y) + g(1) \cdot y^2 = (1-y)^2 + y^2 = 1 - 2y + 2y^2.
\]

Mapping back into \(x \) coordinates, this is

\[
1 - 2 \frac{x + 1}{2} + 2 \left(\frac{x + 1}{2} \right)^2 = \frac{1}{2} (x^2 + 1).
\]

2. Exercise 2.4 on p. 59 in text.

The Weierstrass Approximation Theorem says that any continuous function, such as \(f(x) = |x| \) on \([-1, 1]\), can be arbitrarily well approximated by polynomials. If we map the interval \([-1, 1]\) to \([0, 1]\), as in the previous problem, then, for example the Bernstein polynomials \(B_n(y; |2y - 1|) \) converge to \(|2y - 1|\) in \(C[0, 1], \| \cdot \|_\infty \). These polynomials are not only continuously differentiable but infinitely differentiable, yet their limit is continuous but has a discontinuous derivative at \(y = 1/2 \).

3. Exercise 2.9 on p. 59 in text. [Two norms \(\| \cdot \|_a \) and \(\| \cdot \|_b \) are said to be equivalent if there are positive constants \(m \) and \(M \) such that \(m\|x\|_a \leq \|x\|_b \leq M\|x\|_a \) for all \(x \).]

For \(f \in C[0, 1] \) and \(w : [0, 1] \to \mathbb{R} \) a nonnegative continuous function, define

\[
\|f\|_w = \sup_{0 \leq x \leq 1} \{w(x)|f(x)|\}.
\]

Claim: If \(w(x) > 0 \) for \(0 < x < 1 \), then \(\| \cdot \|_w \) is a norm on \(C[0, 1] \).

(a) \(\|f\|_w \geq 0 \) since \(w(x) \geq 0 \) \(\forall x \in [0, 1] \) and \(|f(x)| \geq 0 \). \(\|f\|_w = 0 \) if and only if \(w(x)|f(x)| = 0 \) for all \(x \in [0, 1] \). Since \(w(x) > 0 \) for all \(x \in (0, 1) \), this could happen only if \(f(x) = 0 \) for all \(x \in (0, 1) \), and since \(f \) is continuous this implies that \(f(0) = f(1) = 0 \) as well. Thus \(\|f\|_w = 0 \) if and only if \(f \equiv 0 \).

(b) For \(\alpha \) a scalar, \(\|\alpha f\|_w = \sup_{0 \leq x \leq 1} w(x)|\alpha f(x)| = \sup_{0 \leq x \leq 1} w(x)|\alpha| |f(x)| = |\alpha| \sup_{0 \leq x \leq 1} w(x)|f(x)| = |\alpha| \cdot \|f\|_w \).
(c) For $f, g \in C[0, 1]$, \(\|f + g\|_\infty = \sup_{0 \leq x \leq 1} w(x) |f(x) + g(x)| \leq \sup_{0 \leq x \leq 1} w(x) (|f(x)| + |g(x)|) \leq \sup_{0 \leq x \leq 1} w(x) |f(x)| + \sup_{0 \leq x \leq 1} w(x) |g(x)| = \|f\|_w + \|g\|_w. \)

Thus \(\|\cdot\|_w \) satisfies all of the requirements of a norm.

If \(w(x) > 0 \) for \(0 \leq x \leq 1 \), then \(w \) attains its infimum on \([0, 1]\) so this infimum is greater than 0; call it \(m \). Likewise, \(w \) attains its supremum on \([0, 1]\) so this supremum is finite; call it \(M \). Then we have \(\|f\|_w = \sup_{0 \leq x \leq 1} w(x)|f(x)| \leq (\sup_{0 \leq x \leq 1} w(x) \cdot (\sup_{0 \leq x \leq 1} |f(x)|) = M\|f\|_\infty. \) Also, \(\|f\|_w \geq (\inf_{0 \leq x \leq 1} w(x) \cdot (\sup_{0 \leq x \leq 1} |f(x)|) = m\|f\|_\infty. \) Thus \(\|\cdot\|_w \) is equivalent to \(\|\cdot\|_\infty \).

The norm \(\|\cdot\|_x \) corresponding to \(w(x) = x \) is not equivalent to \(\|\cdot\|_\infty \) because there is no constant \(m > 0 \) such that \(\|f\|_x \geq m\|f\|_\infty \) for all \(f \in C[0, 1] \). Whatever \(m > 0 \) we try, we can always take \(f = 0 \) on \([m/2, 1]\) and nonzero on \([0, m/2]\). Then \(\|f\|_\infty = \sup_{0 \leq x \leq m/2} |f(x)| \), while \(\|f\|_x \leq (m/2) \cdot \sup_{0 \leq x \leq m/2} |f(x)| \).

Claim: The metric space \((C[0, 1], \|\cdot\|_x)\) is not complete.

Let

\[
\phi_n(x) = \begin{cases}
 x^{-1/2} & 1/n \leq x \leq 1 \\
 n^{1/2} & 0 \leq x \leq 1/n
\end{cases}
\]

Then if \(m > n \),

\[
xf_m(x) - x\phi_n(x) = \begin{cases}
 0 & 1/n \leq x \leq 1 \\
 x^{1/2} - xn^{1/2} & 1/m \leq x \leq 1/n \\
 x(m^{1/2} - n^{1/2}) & 0 \leq x \leq 1/m
\end{cases}
\]

Now,

\[
\sup_{0 \leq x \leq 1/m} |x(m^{1/2} - n^{1/2})| = |m^{-1/2} - n^{1/2}/m| \leq m^{-1/2} \to 0 \text{ as } m \to \infty.
\]

The maximum of \(|x^{1/2} - xn^{1/2}| \) over \(x \in [1/m, 1/n] \) occurs either at an endpoint (where both values go to 0 as \(n, m \to \infty \)) or at a point where \(d/dx((x^{1/2} - xn^{1/2})^2) = 2(x^{1/2} - xn^{1/2})(1/2)x^{-1/2} - n^{-1/2} = 0 \); i.e., at \(x = 1/(4n) \). At \(x = 1/(4n) \), we have \(|x^{1/2} - xn^{1/2}| = 1/(4\sqrt{n}) \), which also goes to 0 as \(n \to \infty \). Thus the sequence \((\phi_n)\) is a Cauchy sequence in the \(x \)-norm. But it does not converge to any continuous function on \([0, 1]\). It converges in \(x \)-norm to \(x^{-1/2} \), which is in \(C(0, 1) \) but not in \(C[0, 1] \) (and not in the equivalence class of any function in \(C[0, 1] \)).

4. Let \(\phi(x) = (x^2 + 4)/5 \). Note that \(\phi(x) = x \) if \(x = 1 \) or \(x = 4 \). Use the contraction mapping theorem to show that if one starts with any \(x_0 \in [-2, 2] \) then the iteration \(x_{k+1} = \phi(x_k) \) converges to the unique fixed point of \(\phi \) in \([-2, 2] \) (i.e., to 1).

\[\phi \] maps the interval \([-2, 2]\) to \([4/5, 8/5] \subset [-2, 2]\). Since \([-2, 2]\) is a closed subspace of the complete metric space \(\mathbb{R} \), it is a complete metric space. Thus \(\phi \) maps a complete metric space into itself, and on \([-2, 2]\), \(\phi \) is a contraction since \(\phi'(x) = 2x/5 \) which is bounded in absolute value by \(4/5 \). Therefore
the contraction mapping theorem tells us that \(\varphi \) has a unique fixed point in \([-2, 2]\) and starting with any \(x_0 \in [-2, 2] \), the iteration \(x_{k+1} = \varphi(x_k) \) will converge to this fixed point.

5. Exercise 3.4 on p. 79 in text.

Using the argument at the top of p. 63, with \(m = 0 \), we see that for any \(n \)
\[
d(x_n, x_0) \leq (1/(1 - c))d(x_1, x_0),
\]
so it follows (since \(\lim_{n \to \infty} x_n = x \) and \(d(\cdot) \) is a continuous function) that
\[
\lim_{n \to \infty} d(x_n, x_0) = d(\lim_{n \to \infty} x_n, x_0) = d(x, x_0) \leq \frac{1}{1 - c}d(x_1, x_0).
\]

6. Exercise 3.6 on p. 79 in text.

Define \(T : C[-a, a] \to C[-a, a] \) by
\[
Tf(x) = 1 + \frac{1}{\pi} \int_{-a}^{a} \frac{1}{1 + (x - y)^2} f(y) dy,
\]
for \(-a \leq x \leq a \).

According to Theorem 3.3, there is a unique continuous function \(f : [-a, a] \to \mathbb{R} \) satisfying \(Tf = f \) if
\[
\sup_{-a \leq x \leq a} \frac{1}{\pi} \int_{-a}^{a} \frac{1}{1 + (x - y)^2} dy < 1.
\]

Since this integral is \(\arctan(a-x) - \arctan(-a-x) \) and \(\arctan \) takes on values in \((-\pi/2, \pi/2)\), the expression on the left must be less than \((2/\pi)\arctan(2a)\), which is strictly less than 1. Thus, the integral equation has a unique continuous solution, which is bounded since it is defined on the compact interval \([-a, a]\).

This solution can be computed by starting with any initial guess, say, \(f_0(x) \equiv 0 \) and iterating according to \(f_{k+1} = T(f_k), \ k = 0, 1, \ldots \). Since \(1/(1 + (x - y)^2) \) is nonnegative for all \(x \) and \(y \), if \(f_k \) is nonnegative then \(f_{k+1} \) will be nonnegative. Thus all of the functions \(f_k, \ k = 0, 1, \ldots \) will be nonnegative so their limit will be nonnegative.

For \(a = \infty \), the mapping \(T \) is no longer a contraction, and the contraction mapping theorem does not guarantee the existence of a unique solution. In fact, if one starts with \(f_0(x) \equiv 0 \) and iterates by setting \(f_{k+1} = T(f_k) \), then one obtains \(f_1(x) = 1, f_2(x) = 2, \ldots, f_k(x) = k, \ldots \), and this sequence does not converge. The equation might still have a unique solution, but we must use some other method to determine that.

7. Determine an interval about \(t_0 = 0 \) (if any) on which the initial value problem \(u' = \sqrt{|u|}, \ u(0) = 1 \), has a unique solution. Justify your answer by citing a theorem and find the largest interval on which the theorem guarantees a unique solution, or demonstrate that the problem has either no solution or multiple solutions on any interval about \(t_0 = 0 \).
\[f(t, u) = \sqrt{|u|} \] is Lipschitz on an interval about \(u_0 = 1 \) of width \(1 - \epsilon \) for any fixed \(\epsilon > 0 \). The maximum value of \(\sqrt{|u|} \) on such an interval is \(\sqrt{2 - \epsilon} \). Hence from Theorem 3.10, the solution exists and is unique for \(t \) in an interval of width \((1 - \epsilon)/\sqrt{2 - \epsilon} \approx 1/\sqrt{2} \) about \(t_0 = 0 \).

8. Suppose \(f(t, u) \) is continuous in \(t \) and \(u \) and uniformly Lipschitz in \(u \). Suppose \(v \) and \(w \) are \(C^1 \) for \(t \geq t_0 \) and satisfy

\[
\begin{align*}
v'(t) &= f(t, v(t)) & w'(t) &\leq f(t, w(t)) \\
v(t_0) &= v_0 & w(t_0) &\leq v_0
\end{align*}
\]

Show that \(w(t) \leq v(t) \) for all \(t \geq t_0 \).

Proof by contradiction: Suppose \(w(T) > v(T) \) for some \(T > t_0 \). Since \(v \) and \(w \) are continuous, there is a point \(t_1 \) between \(t_0 \) and \(T \) where \(v(t_1) = w(t_1) \) and \(w(t) > v(t) \) for \(t \in (t_1, T] \). For \(t \in [t_1, T] \), we have \(w(t) - v(t) = |w(t) - v(t)| \) and so, if \(f \) has Lipschitz constant \(L \),

\[
(w - v)'(t) \leq f(t, w(t)) - f(t, v(t)) \leq L|w(t) - v(t)| = L(w - v)(t).
\]

By Gronwall’s inequality (applied to \(w - v \) on \([t_1, T], \) with \((w - v)(t_1) = 0 \), \((w - v)(t) \leq 0 \) on \([t_1, T], \) which is a contradiction since we assumed \(w(T) > v(T) \). Therefore there can be no such point \(T \) where \(w(T) > v(T) \); that is, \(w(t) \leq v(t) \) for all \(t \geq t_0 \).