Simple linear regression

BIOST 515

January 8, 2004
Simple Linear Regression

Simple linear regression of response Y on predictor X

Begin with sample: $(X_1, Y_1), \ldots (X_N, Y_N)$

$$Y_i = E[Y_i|X_i] + \epsilon_i$$

where

$$E[Y_i|X_i] = \beta_0 + \beta_1 X_i$$

and

$$E(\epsilon_i) = 0, \ var(\epsilon_i) = \sigma^2 \text{ and } cov(\epsilon_i, \epsilon_j) = 0.$$
Simple linear regression: example

Trends in mortality with education level

Properties of 60 Standard Metropolitan Statistical Areas (a standard Census Bureau designation of the region around a city) in the United States, collected from a variety of sources.

- Outcome variable: Mortality
- Data collected on possible predictors: social and economic conditions, climate and indices of air pollution
- Question: How is mortality in an SMSA related to the median education level of the population in the SMSA?
Scatterplot of Mortality versus Education
Descriptives for Mortality in Education Strata

<table>
<thead>
<tr>
<th>Median years of education</th>
<th>Number in strata</th>
<th>Mean mortality</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-10</td>
<td>9</td>
<td>978.81</td>
<td>81.27</td>
</tr>
<tr>
<td>10-11</td>
<td>21</td>
<td>969.13</td>
<td>44.48</td>
</tr>
<tr>
<td>11-12</td>
<td>20</td>
<td>925.08</td>
<td>41.93</td>
</tr>
<tr>
<td>12+</td>
<td>10</td>
<td>875.83</td>
<td>53.31</td>
</tr>
</tbody>
</table>
Plot of Mean mortality versus Yrs. Educ.

```r
smsa <- read.table("smsa.dat",header=T)
plot(smsa$Education,smsa$Mortality, xlab="Education", ylab="Mortality")
m1=tapply(smsa$Mortality, cut(smsa$Education,breaks=c(8,seq(10,13,1))),mean)
points(c(9,10.5,11.5,12.5), m1, pch=2, cex=2, col=2, type="b")
```
Least Squares Estimation

How do we estimate the parameters in

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i?$$

We want to minimize the distance between the observed Y_is and their fitted values, $\beta_0 + \beta_1 X_i$.

For the ith observation, this distance is expressed as

$$(Y_i - (\beta_0 + \beta_1 X_i))^2.$$

But we want to determine this over all observations.
Obtaining least squares estimates

Minimize

\[S^2 = \sum_{i=1}^{N} (Y_i - (\beta_0 + \beta_1 X_i))^2 \]

Set the first derivatives equal to 0

\[\frac{\partial S^2}{\partial \beta_0} = -2 \sum_{i=1}^{N} (Y_i - \beta_0 - \beta_1 X_i) = 0 \]

\[\frac{\partial S^2}{\partial \beta_1} = -2 \sum_{i=1}^{N} X_i (Y_i - \beta_0 - \beta_1 X_i) = 0 \]

And solve for \(\beta_0 \) and \(\beta_1 \).
Least squares estimates

\[\hat{\beta}_1 = \frac{\sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{N} (X_i - \bar{X})^2} \]

and

\[\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}. \]

Using these results, we get estimates of the fitted value of the \(i\)th observation

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i \]

and the \(i\)th residual

\[e_i = Y_i - \hat{Y}_i. \]

Using these results, we can make statements about the relationship of the predictor and the outcome (the mean), but we cannot say much else without more assumptions.
Estimation of Least Squares Line

```r
lm1 <- lm(Mortality~Education, data=smsa)
summary(lm1)
```

Call:
```
lm(formula = Mortality ~ Education, data = smsa)
```

Residuals:
```
          Min       1Q   Median       3Q      Max
-151.724  -37.099    2.419   43.813  124.909
```

Coefficients:
```
                   Estimate Std. Error t value  Pr(>|t|)
(Intercept) 1353.158     91.423  14.801 < 2e-16 ***
Education    -37.619      8.307  -4.529  3.01e-05 ***
```

BIOST 515
Interpretation of Output

Estimates of regression parameters

• Intercept is labeled "(Intercept)"
 Estimated intercept: 1353.158

• The slope is labeled by its variable name: "Education"
 Estimated slope: -37.62
Superimposed Plot of Least Squares Line

```r
plot(smsa$Education, smsa$Mortality, xlab="Education", ylab="Mortality")
points(c(9.5, 10.5, 11.5, 12.15), m1, pch=2, cex=2, col=2, type="b")
abline(coef(lm1))
```
Graphical examination of the model

Plotting residuals against the predictor

```r
resids = smsa$Mortality - fitted(lm1)
plot(smsa$Education, resids, xlab = "Education", ylab = "Residuals")
```
Plotting the fitted outcome against the observed outcome

plot(smsa$Mortality, fitted(lm1), xlab="Observed Mortality", ylab="Fitted Mortality")
Inference

In general, a point estimate is not very useful. We require a measure of the precision of the estimate.

The least squares estimators, $\hat{\beta}_0$ and $\hat{\beta}_1$ may be expressed as

\[
\hat{\beta}_0 = \sum_{i=1}^{N} l_i Y_i
\]

and

\[
\hat{\beta}_1 = \sum_{i=1}^{N} k_i Y_i,
\]

where

\[
l_i = \frac{1}{N} - \frac{\bar{x}(x_i - \bar{x})}{\sum_{i=1}^{N}(x_i - \bar{x})^2}
\]
and

\[k_i = \frac{(x_i - \bar{x})}{\sum_{i=1}^{N} (x_i - \bar{x})^2}. \]

It is easily show that the least squares estimators are _unbiased_ since

\[E[\hat{\beta}_0] = \sum_{i=1}^{N} l_i E[Y_i] = \beta_0 \]

and

\[E[\hat{\beta}_1] = \sum_{i=1}^{N} k_i E[Y_i] = \beta_1 \]

where \(\sum_i l_i = 1, \sum_i l_i x_i = 0, \sum_i k_i = 0 \) and \(\sum_i k_i x_i = 1 \). Note that this derivation required no assumptions about the second moments of \(Y_i \).
Variance of least squares estimators

Following the previous derivations we have

\[
\text{var}(\hat{\beta}_0) = \sigma^2 \left\{ \frac{1}{N} + \frac{\bar{x}^2}{\sum_{i=1}^{N} (x_i - \bar{x})^2} \right\} = \sigma^2 c_0^2 \\
\text{var}(\hat{\beta}_1) = \sigma^2 \left\{ \frac{1}{\sum_{i=1}^{N} (x_i - \bar{x})^2} \right\} = \sigma^2 c_1^2,
\]

where \(c_0^2 = \sum_i l_i^2 \) and \(c_1^2 = \sum_i k_i^2 \).

\[
\text{cov}(\hat{\beta}_0, \hat{\beta}_1) = \sigma^2 \left\{ -\frac{\bar{x}}{\sum_{i=1}^{N} (x_i - \bar{x})^2} \right\}
\]
So far, we haven’t made any distributional assumptions about ϵ_i. If we assume normality ($\epsilon_i \sim N(0, \sigma^2)$), then the least squares estimators are normally distributed.

Alternatively,

- If we have a large sample size, asymptotic normality may be assumed for the estimators.
- If asymptotic normality does not hold, bootstrap or Monte Carlo methods may be appropriate.
Confidence intervals

If β_0 and β_1 are normally distributed and σ^2 is known, we can construct the following $100(1 - \alpha)\%$ confidence intervals

$$\hat{\beta}_j \pm Z_{1-\alpha/2} \times \sqrt{\text{var}(\hat{\beta}_j)}, \ j = 0, 1$$

In general, σ^2 is unknown. An unbiased estimate is given by

$$\hat{\sigma}^2 = \frac{1}{N - 2} \sum_{i=1}^{N} e_i^2 = \frac{1}{N - 2} \sum_{i=1}^{N} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 = \frac{\text{RSS}}{N - 2},$$

where RSS is the residual sums of squares. $\hat{\sigma}^2$ is also known as MSE (mean square error).
It can be shown that

\[
\frac{RSS}{\sigma^2} = \frac{(N - 2)\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{N-2}.
\]
Confidence intervals for least squares estimates with unknown σ^2

The relevant $100(1 - \alpha)\%$ confidence intervals are given by

$$\hat{\beta}_j \pm t_{N-2,1-\alpha/2} \times \text{s.e.}(\hat{\beta}_j), \ j = 0, 1,$$

(1)

where $t_{N-2}(1 - \alpha/2)$ denotes the $1 - \alpha/2$ point of the standard t-distribution with $N - 2$ degrees of freedom and $\text{s.e.}(\hat{\beta}_j) = \hat{\sigma} \times c_j$.

From the SMSA example, we can now calculate a confidence interval for the estimates of the slope and intercept.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>$1353.158 \pm 2.00 \times 91.423$</td>
<td>$(1334.3, 1372.0)$</td>
</tr>
<tr>
<td>β_1</td>
<td>$-37.619 \pm 2.00 \times 8.307$</td>
<td>$(-54.2, -21.0)$</td>
</tr>
</tbody>
</table>
Confidence interval for a point on the regression line

\[\hat{Y}_i = \beta_0 + \beta_1 x_i = \bar{Y} - \beta_1 \bar{x} + \beta_1 x_i \]

\[= \bar{Y} + \beta_1 (x_i - \bar{x}) \]

\[\text{var}(\hat{Y}_i) = \text{var}(\bar{Y}) + (x_i - \bar{x})^2 \frac{\sigma^2}{\sum_i (x_i - \bar{x})^2} \]

\[= \sigma^2 \left[\frac{1}{N} + \frac{(x_i - \bar{x})^2}{\sum_i (x_i - \bar{x})^2} \right] \]

The 100\((1 - \alpha) \)% confidence interval for \(\hat{Y}_i \) is

\[\hat{Y}_i \pm t_{N-2,1-\alpha/2} \hat{\sigma} \sqrt{\frac{1}{N} + \frac{(x_i - \bar{x})^2}{\sum_i (x_i - \bar{x})^2}}. \]
For the SMSA example:

\[N = \text{dim(smsa)}[1] \]
\[SSXi = (\text{smsa}\$\text{Education} - \text{mean(smsa}\$\text{Education}))^2 \]
\[SSX = \text{sum(SSXi)} \]

```r
plot(smsa\$Education, smsa\$Mortality, xlab="Education", ylab="Mortality")
ord = order(smsa\$Education)
lines(smsa\$Education[ord], fitted(lm1)[ord])
for(i in c(-1,1))lines(smsa\$Education[ord], (fitted(lm1) + i*qt(.025, N-2) * 53.94 * sqrt(1/N + SSXi/SSX))[ord])
```

Omitted Diagram

This diagram illustrates a scatter plot of Education versus Mortality, with lines indicating the fitted values from the model, along with the confidence intervals for different levels of education.
Hypothesis Testing for least squares estimates

Similar to the approach for obtaining confidence intervals for β_j, we find that

$$T = \frac{\hat{\beta}_1 - \beta_1}{\text{s.e.}(\hat{\beta}_1)} \sim t^{N-2}. \tag{2}$$

Now we can construct hypothesis tests for the regression parameters. From the SMSA example:

Test: $H_0 : \beta_1 = 0$ vs. $H_A : \beta_1 \neq 0$

Under the null hypothesis,

$$t_{obs} = \frac{\hat{\beta}_1 - \beta_1}{\text{s.e.}(\hat{\beta}_1)} \sim t^{N-2} = -37.619/8.307 = -4.529. \text{ To perform an } \alpha = .05 \text{ level test we compare } t_{obs} \text{ (our observed value of (2)) to } t^{N-2}(\alpha/2) = -2.00 \text{ which is not as extreme as } t_{obs}; \text{ therefore, we reject the null hypothesis.}$$