10.1. Best Linear Unbiased Estimates

Definition: The *Best Linear Unbiased Estimate (BLUE)* of a parameter θ based on data Y is

1. a linear function of Y. That is, the estimator can be written as $b'Y$,
2. unbiased ($E[b'Y] = \theta$), and
3. has the smallest variance among all unbiased linear estimators.

Theorem 10.1.1: For any linear combination $c'\theta$, $c'\hat{Y}$ is the BLUE of $c'\theta$, where \hat{Y} is the least-squares orthogonal projection of Y onto $\mathcal{R}(X)$. **Proof:** See lecture notes # 8

Corollary 10.1.2: If rank$(X_{n \times p}) = p$, then, for any a, $a'\hat{\beta}$ is the BLUE of $a'\beta$.

Note: The Gauss-Markov theorem generalizes this result to the less than full rank case, for *certain* linear combinations $a'\beta$ (the *estimable functions*).
Proof of Corollary 10.1.2:

\[\theta = X\beta \]
\[X'\theta = X'X\beta \]
\[(X'X)^{-1}X'\theta = (X'X)^{-1}X'X\beta = \beta \]
\[\Rightarrow a'\beta = \underbrace{a'(X'X)^{-1}X'}_{c'} \theta \]

So \(a'\beta = c'\theta \) where \(c' = a'(X'X)^{-1}X' \).

Now, \(a'\hat{\beta} = a'(X'X)^{-1}X'Y \) and

\[c'\hat{Y} = a'(X'X)^{-1}X'\hat{Y} \]
\[= a'(X'X)^{-1}X'X(X'X)^{-1}X'Y \]
\[= a'(X'X)^{-1}X'Y \]

Therefore, since \(a'\hat{\beta} = c'\hat{Y} \), it is the BLUE of \(a'\beta = c'\theta \).
10. ESTIMABLE FUNCTIONS AND GAUSS-MARKOV THEOREM

10.2. Estimable Functions

In the less than full rank case, only certain linear combinations of the components of β can be unbiasedly estimated.

Definition: A linear combination $a'\beta$ is *estimable* if it has a linear unbiased estimate, i.e., $E[b'Y] = a'\beta$ for some b for all β.

Lemma 10.2.1:

(i) $a'\beta$ is estimable if and only if $a \in \mathcal{R}(X')$.

Proof: $E[b'Y] = b'X\beta$, which equals $a'\beta$ for all β if and only if $a = X'b$.

(ii) If $a'\beta$ is estimable, there is a unique $b_\ast \in \mathcal{R}(X)$ such that $a = X'b_\ast$.

Proof: $a'\beta$ is estimable so using (i) $a = X'b$. Any $b \in \mathbb{R}^n$ can be uniquely decomposed as $b = b_\ast + \tilde{b}$, where $b_\ast \in \mathcal{R}(X)$, and $\tilde{b} \in \mathcal{R}(X)^\perp$. Then

$$a = X'b = X'b_\ast + X'\tilde{b} = X'b_\ast.$$

Comment: Part (i) of the lemma may be a little bit surprising since all of a sudden we are talking about the row space of X, not the column space. However, the idea behind the result need not be mysterious. Every observation we have is an unbiased estimate of its expected value; the expected value of an observation is some linear combination of parameters. Such linear combinations of parameters is therefore estimable. These correspond exactly to the rows of X. Clearly, also, linear combinations of estimable functions should be estimable. These are the vectors that are spanned by the rows of X – the row space of X.
10.3. Gauss-Markov Theorem

Note: In the full rank case \(r = p \), any \(a'\beta \) is estimable. In particular,

\[
a'\hat{\beta} = a'(X'X)^{-1}X'Y \equiv b'Y
\]

is a linear unbiased estimate of \(a'\beta \). In this case we also know that \(a'\hat{\beta} \) is the BLUE (Corollary 10.1.2).

Theorem 10.3.1: (Gauss-Markov). If \(a'\beta \) is estimable, then

(i) \(a'\hat{\beta} \) is unique (i.e., the same for all solutions to the normal equations \(\hat{\beta} \)).

(ii) \(a'\hat{\beta} \) is the BLUE of \(a'\beta \).

Proof:

(i) By Lemma 10.2.1, \(a = X'b_* \) for a unique \(b_* \in \mathcal{R}(X) \).
Therefore,

\[
a'\hat{\beta} = b_*'X\hat{\beta} = b_*'\hat{Y}
\]

is unique because \(\hat{Y} \) is unique. (In fact \(b_*'\hat{Y} = b_*'Y \) since \(b_* \in \mathcal{R}(X) \), so that \(b_*'(Y - \hat{Y}) = b_*'\hat{e} = 0 \).)

(ii) By Theorem 10.1.1, \(b_*'\hat{Y} \) is the BLUE of \(b_*'\theta \). But, \(a'\hat{\beta} = b_*'\hat{Y} \) from part (i) and \(a'\beta = b_*'X\beta = b_*'\theta \).
10.4. The Variance of $\mathbf{a}' \hat{\mathbf{\beta}}$

Lemma 10.4.1: If $\mathbf{a}' \mathbf{\beta}$ is estimable then

$$\mathbf{a}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X} = \mathbf{a}'$$

for any generalized inverse $(\mathbf{X}'\mathbf{X})^{-}$.

Proof: If $\mathbf{a}' \mathbf{\beta}$ is estimable, then $\mathbf{a} = \mathbf{X}'\mathbf{b}_{*}$, $\mathbf{b}_{*} \in \mathcal{R}(\mathbf{X})$ by Lemma 10.2.1. Then

$$\mathbf{a}'(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{X} = \mathbf{b}_{*}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{X} = \mathbf{b}_{*}'\mathbf{P}\mathbf{X} = \mathbf{b}_{*}'\mathbf{X} = \mathbf{a}',$$

regardless of the generalized inverse used.

Theorem 10.4.2: If $\mathbf{a}' \mathbf{\beta}$ is estimable, then

$$\text{var}(\mathbf{a}' \hat{\mathbf{\beta}}) = \sigma^{2}\mathbf{a}'(\mathbf{X}'\mathbf{X})^{-}\mathbf{a}.$$

Proof: Using an estimate $\hat{\mathbf{\beta}} = (\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{Y}$, \text{var}(\mathbf{a}' \hat{\mathbf{\beta}}) =

$$\text{var}(\mathbf{a}' \hat{\mathbf{\beta}}) = \text{var}(\mathbf{a}'(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{Y})$$

$$= \mathbf{a}'(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'(\sigma^{2}\mathbf{I})\mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{a}$$

$$= \sigma^{2}\mathbf{a}'(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{a}$$

(by the Lemma) $$= \sigma^{2}\mathbf{a}'(\mathbf{X}'\mathbf{X})^{-}\mathbf{a}.$$

Note that

$$\mathbf{a}'(\mathbf{X}'\mathbf{X})^{-}\mathbf{a} = \mathbf{b}_{*}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{b}_{*} = \mathbf{b}_{*}'\mathbf{P}\mathbf{b}_{*}$$

is unique (same for all generalized inverses $(\mathbf{X}'\mathbf{X})^{-}$).
In-class exercise: One–way ANOVA with K groups. There are K groups with J observations from each group. The model is

$$Y_{kj} = \mu + \alpha_k + \epsilon_{kj}$$

for $k = 1, \ldots, K$ and $j = 1, \ldots, J$. As usual, $E[\epsilon] = 0$ and $\text{var}(\epsilon) = \sigma^2 I$. In this setting we are almost never interested in the μ parameter (why not?). What are the estimable functions of the α parameters?