15.1. The Overall F-Test

Start with the linear model

$$Y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_{p-1} x_{i,p-1} + \varepsilon_i,$$

with full rank design matrix $(\text{rank}(X) = p)$. Note that we are assuming the model contains an intercept. Suppose we want to test whether the overall model is significant, i.e.,

$$H : \beta_1 = \beta_2 = \cdots = \beta_{p-1} = 0.$$

This can be written as

$$H : A\beta = (0, I_{(p-1)\times(p-1)})\beta = 0,$$

i.e., all X variables in the model except the intercept can be deleted. The F test for H is

$$F = \frac{(RSS_H - RSS)/(p - 1)}{RSS/(n - p)} \sim F_{p-1,n-p}, \text{ if } H \text{ is true}$$

This is called the overall F-test statistic for the linear model. It is sometimes used as a preliminary test of the significance of the model prior to performing model selection to determine which variables in the model are important.
15.2. Sample Multiple Correlation Coefficient

The *sample multiple correlation coefficient* is defined as the correlation between the observations Y_i and the fitted values \hat{Y}_i from the regression model:

$$R \equiv \text{corr}(Y_i, \hat{Y}_i) = \frac{\sum_i (Y_i - \bar{Y})(\hat{Y}_i - \bar{\hat{Y}})}{\left[\sum_i (Y_i - \bar{Y})^2 \sum_i (\hat{Y}_i - \bar{\hat{Y}})^2 \right]^{1/2}}.$$

For a MVN vector $(X_1, \ldots, X_{p-1}, Y)$, we define

$$\rho_{Y:X_1,\ldots,X_{p-1}} = \text{corr}(Y, \hat{Y})$$

where \hat{Y} in this context means the conditional expectation of Y given X_1, \ldots, X_{p-1}. R is a sample estimate of $\rho_{Y:X_1,\ldots,X_{p-1}}$.

15.3. The ANOVA Decomposition for a Linear Model

Theorem 15.3.1:
(i) ANOVA decomposition

\[\sum_i (Y_i - \bar{Y})^2 = \sum_i (Y_i - \hat{Y}_i)^2 + \sum_i (\hat{Y}_i - \bar{Y})^2 \]

i.e., Total-SS = RSS + REGRESSION-SS

Proof:

\[\sum_i (Y_i - \bar{Y})^2 = \sum_i (Y_i - \hat{Y}_i + \hat{Y}_i - \bar{Y})^2 \]

Show the cross-product term is 0:

\[\sum_i (Y_i - \hat{Y}_i)(\hat{Y}_i - \bar{Y}) = \sum_i (Y_i - \hat{Y}_i)\hat{Y}_i - \bar{Y} \sum_i (Y_i - \hat{Y}_i) \]

The first term is \(\hat{e}'\hat{Y} = 0 \) because the vectors are orthogonal and the second term is \(\sum_i \hat{e}_i = 0 \) (midterm).
(ii) R^2

\[R^2 = \frac{\sum_i (\hat{Y}_i - \bar{Y})^2}{\sum_i (Y_i - Y)^2} = \frac{\text{REG–SS}}{\text{TOTAL–SS}}. \]

or, equivalently (using (i)),

\[1 - R^2 = \frac{\sum_i (Y_i - \hat{Y})^2}{\sum_i (Y_i - Y)^2} = \frac{\text{RSS}}{\text{TOTAL–SS}}, \]

Interpretation: R^2 is the proportion of variance in the Y_i explained by the regression model.
15. Uses of R^2

Pearson correlation r measures how well two-dimensional data are described by a line with non-zero slope. R^2 is a generalization of r^2 for higher-dimensional data. It indicates how closely the linear model fits the data. If $R^2 = 1$ (the maximum value) then $Y_i = \hat{Y}_i$ and the model is a perfect fit.

The F-test of a hypothesis of the form $H : (0, A_1)\beta = 0$ (does not involve the intercept β_0) can also be formulated as a test for a significant reduction in R^2:

$$F = \frac{(R^2 - R^2_H)(n - p)}{(1 - R^2)q}$$

where R^2 and R^2_H are the sample multiple correlation coefficients for the full model and the reduced model, respectively.

Note: This shows that R^2 cannot increase when deleting a variable in the model (other than the intercept).

Note: Just as judging the “largeness” of correlation is problematic, so is judging the “largeness” of R^2.
15.5. Goodness of Fit

How can we assess if a linear model $Y = X\beta + \varepsilon$ is appropriate? Do the predictors and the linear model adequately describe the mean of Y? We want something stronger than the overall F test, which tests if the predictors are related to the response.

We can test model adequacy if there are replicates, i.e., independent observations with the same values of the predictors (and so the same mean).

Suppose, for $i = 1, \ldots, n$, we have replicates Y_{i1}, \ldots, Y_{iR} corresponding to the values $x_{i1}, \ldots, x_{i,p-1}$ of the predictors. The full model is

$$ Y_{ir} = \mu_i + \varepsilon_{ir} $$

where the μ_i are any constants. We wish to test whether they have the form

$$ \mu_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_{p-1} x_{i,p-1}, $$

Write $\mu = (\mu_1, \ldots, \mu_n)$. We want to test the hypothesis

$$ H : \mu = X\beta. $$
15.6. The F Test for Goodness of Fit

We now apply the general F test to H. The RSS under the full model is

$$RSS = \sum_{i=1}^{n} \sum_{r=1}^{R_i} (Y_{ir} - \bar{Y}_i)^2$$

and for the reduced model

$$RSS_H = \sum_{i=1}^{n} \sum_{r=1}^{R_i} (Y_{ir} - \hat{\beta}_{0H} - \hat{\beta}_{1H}x_{i1} - \ldots - \hat{\beta}_{p-1,H}x_{i,p-1})^2.$$

It can be shown that in the case of equal replications ($R_i = R$) the estimates under the reduced model are

$$\hat{\beta}_H = (X'X)^{-1}X'Z,$$

where $Z_i = \bar{Y}_i = \sum_{r=1}^{R} Y_{ir}/R$ (Seber & Lee, p. 116).

The F statistic is

$$F = \frac{(RSS_H - RSS)/(n-p)}{RSS/(N-n)} \sim F_{n-p,N-n},$$

where $N = \sum_{i=1}^{n} R_i$.

This test is sometimes called the *goodness-of-fit test* and sometimes called the *lack-of-fit test*.