Key points of the last lecture

- U and H (like P, V & T) are state functions
- U and H can be calculated from any path, even one involving changing chemical species from one form to another.

\[C_p = C_v + nR \] for an ideal gas, and are given otherwise. \(C_v \) is independent of V and depends weakly on T. (Usually a power series expansion in powers of T (or T/K) is sufficient.)
A quick review (I):

- Two state functions:
 \[\Delta U = q + w \]
 \[H = U + PV \]

- Pressure-Volume work, (rev. and irrev.)

\[w = -P_{ext} dV \]

\[w_{rev} = -\int_{V_i}^{V_f} P(V) dV \]
\[w_{irrev} = -P_{final} \Delta V \]
Heat Capacity Summary

<table>
<thead>
<tr>
<th>Heat capacity</th>
<th>Definition</th>
<th>For P-V work</th>
<th>For ideal gases</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_V</td>
<td>$\frac{dq_V}{dT}$</td>
<td>$\left(\frac{\partial U}{\partial T} \right)_V$</td>
<td>$\frac{dU}{dT}$</td>
</tr>
<tr>
<td>C_P</td>
<td>$\frac{dq_P}{dT}$</td>
<td>$\left(\frac{\partial H}{\partial T} \right)_P$</td>
<td>$\frac{dH}{dT}$</td>
</tr>
</tbody>
</table>

For an ideal gas, $C_P = C_V + nR$
Phase transitions

\[\Delta H_{\text{melting}} = -\Delta H_{\text{fusion}} \]

\[\Delta H_{\text{vaporization}} = -\Delta H_{\text{condensation}} \]

\[\Delta H_{\text{sublimation}} = -\Delta H_{\text{condensation}} \]

Most phase transitions in everyday life occur at constant pressure. Therefore we want to measure \(\Delta H \). These are heats that change a substance from one phase to another but there is no change in temperature.

\[\Delta H_P = q_P \]
Phase transitions are a good way to store energy.

\[\Delta H_{\text{vaporization}} \text{ of steam at } 100^\circ C = 40660 \text{ J/mole} \]

Think of the industrial revolution!

Example

Calculate the enthalpy used to convert 5 moles (100 grams) of water from ice at 250 K to steam at 450 K by adding heat at constant pressure of 1 atm.

\[\Delta H_{\text{melting}} = 6007 \text{ J/mole } @ \text{ } 273 K \quad C_{P,\text{ice}} = 38.1 \text{ JK}^{-1}\text{mole}^{-1} \]

\[\Delta H_{\text{vaporization}} = 40660 \text{ J/mole } @ \text{ } 373 K \quad C_{P,\text{water}} = 75.4 \text{ JK}^{-1}\text{mole}^{-1} \]

\[C_{P,\text{steam}} = 33.8 \text{ JK}^{-1}\text{mole}^{-1} \]
\[\Delta H = \Delta H_I + \Delta H_{II} + \Delta H_{III} + \Delta H_{IV} + \Delta H_{V} \]

\(\Delta H_I = \Delta H \) of heating ice from 250 K to 273 K

\(\Delta H_{II} = \Delta H \) of melting at 273 K

\(\Delta H_{III} = \Delta H \) of heating water from 273 K to 373 K

\(\Delta H_{IV} = \Delta H \) of vaporization at 373 K

\(\Delta H_{V} = \Delta H \) of heating steam from 373 K to 450 K

\[\Delta H = \int_{T_1}^{T_2} C_p(T) \, dT \approx C_p(\bar{T}) \Delta T \quad (\text{no phase change}) \]

\(\Delta H_I = n \bar{C}_{P,\text{ice}} \Delta T = 4.38 \times 10^3 \, J \)

\(\Delta H_{II} = n H_{\text{melting}} = 3.00 \times 10^4 \, J \)

\(\Delta H_{III} = n \bar{C}_{P,\text{water}} \Delta T = 3.77 \times 10^4 \, J \)

\(\Delta H_{IV} = n \bar{H}_{\text{vaporization}} = 2.03 \times 10^5 \, J \)

\(\Delta H_{V} = n \bar{C}_{P,\text{steam}} \Delta T = 1.30 \times 10^4 \, J \)

\[\Delta H_{\text{TOTAL}} = \sum_{j=1}^{5} \Delta H_j = 2.88 \times 10^5 \, J \]

N.B.: The heat of vaporization is 70% of the total. The heat from melting is 10% Ice is much better at cooling a soda (and the earth) than water at 0°C.
Heat required or given off during a chemical reaction occurring at constant pressure (and constant Temperature).

Why would we want to know the heat given off (or consumed) during a particular chemical reaction?

a) Maximize the heat (i.e. find the best fuel)
b) Minimize the heat (i.e. batteries)
c) Compare efficiencies (metabolism, exercise, etc.)

If ΔH of some reactions are known then we can combine them to calculate unknown ΔHs
Example: It is not practical to measure the heat given off when C burns to CO in a limited amount of O₂ because the product will be a mixture of CO₂ and CO. But we can measure the following at 25 °C:

(1) \[C + O₂ \rightarrow CO₂ \quad \Delta H_1 = -393.5 \text{ kJ/mole} \]

(2) \[CO + \frac{1}{2} O₂ \rightarrow CO₂ \quad \Delta H_2 = -282.9 \text{ kJ/mole} \]

To find \[C + \frac{1}{2} O₂ \rightarrow CO \quad \Delta H = ? \]
\[(1) \quad C + O_2 \rightarrow CO_2 \quad \Delta H_1 = -393.5 \text{ kJ/mole} \]

\[-(2) \quad CO_2 \rightarrow CO + \frac{1}{2} O_2 \quad \Delta H_2 = 282.9 \text{ kJ/mole} \]

\[C + \frac{1}{2} O_2 \rightarrow CO \quad \Delta H = -110.62 \text{ kJ/mole} \]

In general, if we know \(A \rightarrow B\) and \(C \rightarrow B\), we can rearrange the equations to get \(A \rightarrow C\).
Method of Alternate Paths

\[
\Delta H_{\text{rxn}} = \Delta H_A + \Delta H^\circ_{\text{rxn}} + \Delta H_B
\]
Example 1: Calculating phase change at a different temperature using an alternate path

Find ΔH_{vap} of one mole of water at 60 °C.

$\Delta H_{\text{melting}} = 6007 \text{ J/mole @ 273 K}$ \hspace{1cm} $C_{P,\text{ice}} = 38.1 \text{ JK}^{-1}\text{mole}^{-1}$

$\Delta H_{\text{vaporization}} = 40660 \text{ J/mole @ 373 K}$ \hspace{1cm} $C_{P,\text{water}} = 75.4 \text{ JK}^{-1}\text{mole}^{-1}$

$C_{P,\text{steam}} = 33.8 \text{ JK}^{-1}\text{mole}^{-1}$

\[\begin{align*}
\Delta H_{\text{rxn}} & = \Delta H_A + \Delta H_B \\
\Delta H_A & = nC_{P,\text{water}}\Delta T = (1 \text{ mole})(75.4\text{ JK}^{-1}\text{mole}^{-1})(40 \text{ K}) \\
& = 3.02 \times 10^3 \text{ J} \\
\Delta H_{\text{vap}} & = nC_{P,\text{steam}}\Delta T = (1 \text{ mole})(33.8\text{ JK}^{-1}\text{mole}^{-1})(-40 \text{ K}) \\
& = -1.35 \times 10^3 \text{ J} \\
\Delta H & = \Delta H_A + \Delta H_{\text{vap}} + \Delta H_B \\
& = 4.24 \times 10^4 \text{ J}
\end{align*}\]
Example 1: Finding the enthalpy of solution

Conversion of glycine to urea in aqueous solution as opposed to solids.

\[\text{Gly}(s) + \infty \text{H}_2\text{O}(l) \rightarrow \text{Gly}(aq) \quad \Delta H_{\text{diss gly}} = 15.69 \text{kJ/mole of Gly} \]

\[\text{Urea}(s) + \infty \text{H}_2\text{O}(l) \rightarrow \text{Urea}(aq) \quad \Delta H_{\text{diss urea}} = 13.93 \text{kJ/mole of Urea} \]

\[3\text{O}_2 + 2\text{Gly}(s) \rightarrow \text{Urea}(s) + 3\text{CO}_2(g) \quad \Delta H = -1296.8 \text{kJ/mole} \]

We want to find:

\[3\text{O}_2 + 2\text{Gly}(aq) \rightarrow \text{Urea}(aq) + 3\text{CO}_2(g) \quad \Delta H = ? \]
\[\Delta H = -2\Delta H_{\text{diss gly}} + \Delta H_{\text{solid, oxidation}} + \Delta H_{\text{diss urea}} \]

\[= -2(15.69 \text{ kJ/mole}) - 1296.8 \text{ kJ/mole} + 13.93 \text{ kJ/mole} \]

\[= -1314.2 \text{ kJ/mole} \]