Key points of the last lecture

- Heats of formation
- Bond Energies
- Experimental measurement of ΔH
Key points of this lecture

- Introduce the concept of entropy
- Carnot cycle
- S is a state function!
- Efficiency of a Carnot engine
Entropy

\[\Delta U = q + w \]

The first law describes the equivalence of work and heat and we learnt that reversible reactions maximize work.

But, we haven’t learnt anything about the “natural direction” of a particular process.
The second law of thermodynamics does the following:

- Puts restrictions on the useful conversion of heat into work
- Follows from the observation of a directionality to natural or spontaneous processes
- Provides rules for
 1. determining the direction of spontaneous change
 2. determining the equilibrium state of a system

Introduce a new state function called entropy, S

$$dS = \frac{dq_{rev}}{T}$$
Carnot Cycle

The Carnot cycle consists of four processes:

1. Isothermal expansion (from state a to state b) at constant temperature T_{hot}.
2. Adiabatic expansion (from state b to state c) where no heat is exchanged with the surroundings.
3. Isothermal compression (from state c to state d) at constant temperature T_{cold}.
4. Adiabatic compression (from state d to state a) where no heat is exchanged with the surroundings.

The cycle starts and ends at the same state (a to a), with the highest pressure at state a and the lowest pressure at state d. The cycle is reversible and represents the most efficient possible heat engine.
Step 1: Isothermal expansion from V_a to V_b at T_{hot}

$$\Delta U_1 = 0$$

$$w_1 = -\int_{V_a}^{V_b} PdV = -\int_{V_a}^{V_b} \frac{nRT_{\text{hot}}}{V} dV = -nRT_{\text{hot}} \ln \left(\frac{V_b}{V_a}\right)$$

$$q_1 = -w_1 = nRT_{\text{hot}} \ln \left(\frac{V_b}{V_a}\right)$$
Step 2: Adiabatic expansion from V_b to V_c

\[q_2 = 0 \]

\[\Delta U_2 = w_2 \]

\[\Delta U_2 = w_2 = C_v (T_{cold} - T_{hot}) \]

\[
\int_{T_{hot}}^{T_{cold}} C_v dT = -\int_{V_b}^{V_c} \frac{nRT}{V} dV
\]

\[C_v \ln \left(\frac{T_{cold}}{T_{hot}} \right) = nR \ln \left(\frac{V_b}{V_c} \right) \]
Step 3: Isothermal compression from V_c to V_d at T_{cold}

\[\Delta U_3 = 0 \]

\[w_3 = -\int_{V_c}^{V_d} P \, dV = -\int_{V_c}^{V_d} \frac{nRT_{\text{cold}}}{V} \, dV = -nRT_{\text{cold}} \ln \left(\frac{V_d}{V_c} \right) \]

\[q_3 = -w_3 = nRT_{\text{cold}} \ln \left(\frac{V_d}{V_c} \right) \]
Step 4: Adiabatic compression from \(V_d \) to \(V_a \)

\[
q_4 = 0
\]

\[
\Delta U_4 = w_4
\]

\[
\Delta U_4 = w_4 = C_v (T_{hot} - T_{cold})
\]

\[
\int_{T_{cold}}^{T_{hot}} C_v dT = - \int_{V_d}^{V_a} \frac{nRT}{V} dV
\]

\[
C_v \ln \left(\frac{T_{hot}}{T_{cold}} \right) = nR \ln \left(\frac{V_d}{V_a} \right)
\]
Relating the ratios of the volumes

\[C_v \ln \left(\frac{T_{\text{hot}}}{T_{\text{cold}}} \right) = nR \ln \left(\frac{V_d}{V_a} \right) = nR \ln \left(\frac{V_c}{V_b} \right) \]

\[\left(\frac{V_d}{V_a} \right) = \left(\frac{V_c}{V_b} \right) = \left(\frac{V_d}{V_c} \right) = \left(\frac{V_a}{V_b} \right) \]

Finding the total change in heat during the cycle

\[q_{\text{total}} = q_1 + q_2 + q_3 + q_4 \]

\[= nRT_{\text{hot}} \ln \left(\frac{V_b}{V_a} \right) + 0 + nRT_{\text{cold}} \ln \left(\frac{V_d}{V_c} \right) \]

\[= nR \left(T_{\text{hot}} - T_{\text{cold}} \right) \ln \left(\frac{V_b}{V_a} \right) \]
Finding the total change in work during the cycle

\[w_{\text{total}} = w_1 + w_2 + w_3 + w_4 \]

\[= -nRT_{\text{hot}} \ln \left(\frac{V_b}{V_a} \right) + C_v \left(T_{\text{cold}} - T_{\text{hot}} \right) - nRT_{\text{cold}} \ln \left(\frac{V_d}{V_c} \right) + C_v \left(T_{\text{hot}} - T_{\text{cold}} \right) \]

\[= -nR \left(T_{\text{hot}} - T_{\text{cold}} \right) \ln \left(\frac{V_b}{V_a} \right) \]

Finding the total change in internal energy during the cycle

\[\Delta U = q_{\text{total}} + w_{\text{total}} = 0 \]
Finding the total change in entropy during the cycle

\[
\Delta S = \sum_i \frac{q_i}{T_i} = \frac{q_1}{T_{hot}} + \frac{q_2}{T_2} + \frac{q_3}{T_{cold}} + \frac{q_4}{T_4}
\]

\[
= \frac{nRT_{hot}}{T_{hot}} \ln \left(\frac{V_b}{V_a} \right) + 0 + \frac{nRT_{cold}}{T_{cold}} \ln \left(\frac{V_d}{V_c} \right) + 0
\]

\[
= nR \ln \left(\frac{V_b}{V_a} \right) - nR \ln \left(\frac{V_b}{V_a} \right)
\]

\[
= 0
\]

Entropy is also a state function!
Efficiency of a Carnot engine

\[
\text{efficiency} = \varepsilon = \frac{|w_{\text{total}}|}{q_{\text{total}}}
\]

\[
\varepsilon = \frac{|w_1 + w_2 + w_3 + w_4|}{q_1 + q_2 + q_3 + q_4} = \frac{|w_1 + w_2 + w_3 + w_4|}{q_1 + q_3}
\]
\[
\varepsilon = \left| \frac{w_1 + w_2 + w_3 + w_4}{q_1 + q_2 + q_3 + q_4} \right| = \left| \frac{w_1 + w_2 + w_3 + w_4}{q_1 + q_3} \right|
\]

Since \(q_3 \) is discharged at a lower temperature it escapes into the environment and is lost.

\[
\varepsilon = \left| \frac{W_{total}}{q_1} \right|
\]

\[
\varepsilon = 1 - \frac{T_{cold}}{T_{hot}}
\]
Key points of this lecture

- Introduce the concept of entropy
- Carnot cycle
- S is a state function!
- Efficiency of a Carnot engine