Modified Berggren Equation

October 26, 2004
Stefan Formula

- Assumes latent heat of the soil is the only heat which must be removed when freezing the soil.
- This is an over simplification of the actual conditions.
Stefan Formula
Stefan Formula

Heat removal process can be represented by

\[Q_1 = L \frac{dx}{dt} \rightarrow \text{heat released by freezing a layer of soil } dx \text{ thick in time } dt \]

\[Q_2 = \frac{\Delta T}{R} = \frac{\Delta T}{(x/k_f)} \rightarrow \text{heat conducted through frozen layer} \]

and

\[Q_1 = Q_2 \Rightarrow L \frac{dx}{dt} = k_f \frac{\Delta T}{x} \]

by integrating and solving for \(x \).

\[x = \sqrt{\frac{2k_f}{L}} \int \Delta T \, dt \]

(Eq. 2.1)
Stefan Formula

• Refer to Para 3.2.2.2 and Equation 2.1

\[\int (\Delta T) (dt) = \text{surface freezing index (°F-hr).} \]

Freezing index normally expressed as °F-days. Thus expression is \((2)(24)(n)(FI) = 48nFI\)
Modified Berggren Equation

• Best reference for Assignment No. 3 is PGI (1995), Volume 2, Section 2.0, Paragraph 3.2.2

• Modified Berggren Equation:

\[x = \lambda \sqrt[48]{48(k_{avg})(n)(FI)} \]
Inputs

• $k = \text{thermal conductivity} = \text{BTU/hr-ft}^2\cdot{}^\circ\text{F/ft}$

 $= \text{BTU/hr-ft}^{-{}\circ}\text{F}$

• k for pavement material's $f(\text{density, mc})$

• k for HMA?
Inputs

\(k_{\text{avg}} \)

- Average thermal conductivity of each layer. First, you must estimate the layer moisture content and dry density (see Para 3.2). If you want to use figures for determination of \(k \), refer to Figs 2.28-2.30. Get \(k \) values for frozen and unfrozen cases, then average.
Inputs

Sources for equation inputs:

• **FI**: Average FI is given for most Washington State cities in Table 2.10. Use the contour map (Fig 2.33) for Design FI. Units are °F-days.

• **n**: Adjusts air FI (which is what you get from Table 2.10 or Fig 2.33) to surface FI. Refer to “Typical Values” in Para 3.2.1.5(c)(i).

\[n = \frac{\text{surface freezing index}}{\text{air freezing index}} \]
Inputs

Figure 2.33. Design Annual Freezing Index Contour Map
Inputs

Sources for equation inputs:

- **L**: Latent heat is the heat that must be removed to convert an unfrozen soil to frozen at 32°F. Function of the layer density and moisture content (refer to Para 3.2.1.4).

\[
L = (144 \text{ BTU/lb})(w)(\gamma_d) = \text{BTU/ft}^3
\]
Modified Berggren Equation

• Must deal with multiple layers for most conditions (and Assignment 3)
• Use the following

\[
x = \lambda \sqrt{\frac{48(n)(FI)}{(L/k)_{\text{eff}}}}
\]
Use of Modified Berggren Equation

• How do you calculate \((L/k)_{\text{eff}}\)?
• First, **assume** a depth of freeze, \(x\)
• Second, use

\[
(L/k)_{\text{eff}} = \frac{2}{x^2} \left[\frac{z_1}{k_1} \left(\frac{L_1 z_1}{2} + L_2 z_2 + L_3 z_3 \right) + \frac{z_2}{k_2} \left(\frac{L_2 z_2}{2} + L_3 z_3 \right) + \frac{z_3}{k_3} \left(\frac{L_3 z_3}{2} \right) \right]
\]

This is the assumed total depth of freeze (ft)