Some practice problems to help with learning algorithm complexity and Big-O

1) Using the definition of Big O prove the following functions \(g(n) \) are \(O(f(n)) \) for the given \(g(n) \) and \(f(n) \).
 a. \(g(n) = 18 \times n^3 + 13n \), \(f(n)=n^3 \); prove: \(g(n) \) is \(O(n^3) \)
 b. \(g(n) = 34 + \log_2 n \), \(f(n)=\log_2 n \); prove: \(g(n) \) is \(O(\log_2 n) \)
 c. \(g(n) = \log_2 n + n \), \(f(n) = n \); prove: \(g(n) \) is \(O(n) \)
 d. \(g(n) = (n^2 + 1) / (n + 1) \), \(f(n) = n \); prove: \(g(n) \) is \(O(n) \)

2) Show that \(2^n \) is \(O(3^n) \) but \(3^n \) is not \(2^n \)

3) Give a big-oh upper bound on the running time of the for-loop that includes function \(\text{func2}(n) \) whose big-oh upper bound is \(O(f(n)) \).

 for (int i = 1; i <= n - 3; i++)
 {
 func2(n);
 }

4) What is the order of each of the following tasks in the worst case?
 a. Computing the sum of the first \(n \) even integers by using a for loop
 b. Displaying all \(n \) integers in an array
 c. Computing the sum of the first \(n \) even integers by using recursion
 d. Computing the sum of the first \(n \) even integers by using a closed formula
 e. Finding an element in an unsorted list
 f. Finding an element in a sorted list

5) The following fragment of code computes the matrix multiplication of \(a[n][n] \) and \(b[n][n] \). Give a big-oh upper bound on the running time.

 for (int i = 0, i < n, i++)
 for (int j = 0, j < n, j++)
 {
 c[i][j] = 0.0;
 for (int k = 0, k < n, k++)
 c[i][j] += a[i][k] * b[k][j];
 }
6) Find a big-oh upper bound for the worst-case time required by the following algorithm. Assume that func1 is big $O(f_1(n))$ and func2 is big $O(f_2(n))$:

```c
bool iskey(int s[], int n, int key)
{
    for ( int i = 0; i < n - 1; i++ )
    {
        for ( int j = i + 1; j < n; j++ )
        {
            if ( s[i] + s[j] == key )
            {
                func1(n);
            }
            else
            {
                func2(n);
            }
        }
    }
}
```

7) Let k be a positive integer. Show that $1^k + 2^k + 3^k + \ldots + n^k$ is $O(n^{k+1})$.
Some Answers

1) Using the definition of Big O prove the following functions g(n) are O(f(n)) for the given g(n) and f(n).

a. \(g(n) = 18 \times n^3 + 13n, \quad f(n) = n^3 \); prove: \(g(n) \) is \(O(n^3) \)

Answer:

As per the definition of BigO:

- An Algorithm \(A \) is order \(f(n) \): Denoted \(O(f(n)) \)
 - If constants \(k \) and \(n_0 \) exist
 - Such that \(A \) requires no more than \(k \times f(n) \) time units to solve a problem of size \(n \geq n_0 \)

Let’s find a \(k \) and \(n_0 \) so that

\[kn^3 > 18 \times n^3 + 13n \] for all \(n \geq n_0 \)

First, let’s divide each size by \(n^3 \)

\[k > 18 + \frac{13}{n^2} \]

Let’s set \(k = 18 + 13 = 31 \); and substitute in for \(k \).

\[31 > 18 + \frac{13}{n^2} \]

\[13 \times \frac{13}{n^2} \] is clearly true for all \(n \geq 2 \).

4) What is the order of each of the following tasks in the worst case?

a. Computing the sum of the first \(n \) even integers by using a for loop
 Answer: \(O(n) \)

b. Displaying all \(n \) integers in an array
 Answer: \(O(n) \)

c. Computing the sum of the first \(n \) even integers by using recursion
 Answer: \(O(n) \)

d. Computing the sum of the first \(n \) even integers by using a closed formula
 Answer: \(O(1) \)

e. Finding an element in an unsorted list
 Answer: \(O(n) \)

f. Finding an element in a sorted list
 Answer: depends on searching algorithm. Let’s say we have a variant of binary search. Then \(O(\log n) \).
The following fragment of code computes the matrix multiplication of \(a[n][n]\) and \(b[n][n]\).

Give a big-oh upper bound on the running time.

```c
for ( int i = 0, i < n, i++ )
    for ( int j = 0, j < n, j++ )
    {
        c[i][j] = 0.0;
        for ( int k = 0, k < n, k++ )
            c[i][j] += a[i][k] * b[k][j];
    }
```

Answer: \(O(n^3)\)

7) Let \(k\) be a positive integer. Show that \(1^k + 2^k + 3^k + \ldots + n^k\) is \(O(n^{k+1})\).

Hint: Represent \(n^{k+1}\) as \((n^k + n^k + n^k + \ldots + n^k)\)