Classification

Nearest Neighbor
Instance based classifiers

Set of Stored Cases

<table>
<thead>
<tr>
<th>Atr1</th>
<th>........</th>
<th>AtrN</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>

- Store the training samples
- Use training samples to predict the class label of unseen samples

Unseen Case

<table>
<thead>
<tr>
<th>Atr1</th>
<th>........</th>
<th>AtrN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Instance based classifiers

- Examples:
 - Rote learner
 - Memorize entire training data
 - Perform classification only if attributes of test sample match one of the training samples exactly
 - Nearest neighbor
 - Use k “closest” samples (nearest neighbors) to perform classification
Nearest neighbor classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it’s probably a duck

- compute distance
- test sample
- choose k of the “nearest” samples
- training samples
Nearest neighbor classifiers

Requires three inputs:

1. The set of stored samples
2. Distance metric to compute distance between samples
3. The value of k, the number of nearest neighbors to retrieve
Nearest neighbor classifiers

To classify unknown record:
1. Compute distance to other training records
2. Identify k nearest neighbors
3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)
Definition of nearest neighbor

(a) 1-nearest neighbor
(b) 2-nearest neighbor
(c) 3-nearest neighbor

\(k \)-nearest neighbors of a sample \(x \) are datapoints that have the \(k \) smallest distances to \(x \)
1-nearest neighbor

Voronoï diagram
Nearest neighbor classification

- Compute distance between two points:
 - Euclidean distance
 \[d(x, y) = \sqrt{\sum_i (x_i - y_i)^2} \]

- Options for determining the class from nearest neighbor list
 - Take majority vote of class labels among the \(k \)-nearest neighbors
 - Weight the votes according to distance
 - example: weight factor \(w = 1 / d^2 \)
Choosing the value of k:

- If k is too small, sensitive to noise points.
- If k is too large, neighborhood may include points from other classes.
Nearest neighbor classification

- Scaling issues
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5 m to 1.8 m
 - weight of a person may vary from 90 lb to 300 lb
 - income of a person may vary from $10K to $1M
Nearest neighbor classification...

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality
 - Can produce counter-intuitive results

\[
\begin{align*}
\text{1 1 1 1 1 1 1 1 1 1 0} & \quad \text{vs} \quad \text{1 0 0 0 0 0 0 0 0 0 0} \\
\text{0 1 1 1 1 1 1 1 1 1 1} & \quad \text{d = 1.4142} \\
\text{0 0 0 0 0 0 0 0 0 0 1} & \quad \text{d = 1.4142}
\end{align*}
\]

- one solution: normalize the vectors to unit length
Nearest neighbor classification

- \(k \)-Nearest neighbor classifier is a lazy learner
 - Does not build model explicitly.
 - Unlike eager learners such as decision tree induction and rule-based systems.
 - Classifying unknown samples is relatively expensive.
- \(k \)-Nearest neighbor classifier is a local model, vs. global model of linear classifiers.
Example: PEBLS

- **PEBLS: Parallel Examplar-Based Learning System (Cost & Salzberg)**
 - Works with both continuous and nominal features
 - For nominal features, distance between two nominal values is computed using modified value difference metric (MVDM)
 - Each sample is assigned a weight factor
 - Number of nearest neighbor, \(k = 1 \)
Example: PEBLS

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Distance between nominal attribute values:

\[d(\text{Single, Married}) = |2/4 - 0/4| + |2/4 - 4/4| = 1 \]

\[d(\text{Single, Divorced}) = |2/4 - 1/2| + |2/4 - 1/2| = 0 \]

\[d(\text{Married, Divorced}) = |0/4 - 1/2| + |4/4 - 1/2| = 1 \]

\[d(\text{Refund=Yes, Refund=No}) = |0/3 - 3/7| + |3/3 - 4/7| = 6/7 \]

\[d(V_1, V_2) = \sum_i \left| \frac{n_{1i}}{n_1} - \frac{n_{2i}}{n_2} \right| \]

<table>
<thead>
<tr>
<th>Class</th>
<th>Marital Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Single Married Divorced</td>
</tr>
<tr>
<td>Yes</td>
<td>2 0 1</td>
</tr>
<tr>
<td>No</td>
<td>2 4 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Refund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0 3</td>
</tr>
<tr>
<td>No</td>
<td>3 4</td>
</tr>
</tbody>
</table>
Example: PEBLS

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>Y</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
</tbody>
</table>

Distance between record X and record Y:

\[\Delta(X, Y) = w_X w_Y \sum_{i=1}^{d} d(X_i, Y_i)^2 \]

where:

\[w_X = \frac{\text{Number of times X is used for prediction}}{\text{Number of times X predicts correctly}} \]

\[w_X \approx 1 \text{ if X makes accurate prediction most of the time} \]

\[w_X > 1 \text{ if X is not reliable for making predictions} \]
Decision boundaries in global vs. local models

- **linear regression**
 - global
 - stable
 - can be inaccurate

- **15-nearest neighbor**
 - local
 - accurate
 - unstable

- **1-nearest neighbor**

What ultimately matters: **GENERALIZATION**