Collaborative Filtering

Nearest Neighbor Approach
Bad news

Netflix Prize data no longer available to public.

- Just after contest ended in July 2009:
 - Plans for Netflix Prize 2 contest were announced
 - Contest data was made available for further public research at UC Irvine repository

- But a few months later:
 - Netflix was being sued for supposed privacy breaches connected with contest data
 - FTC was investigating privacy concerns

- By March 2010:
 - Netflix had settled the lawsuit privately
 - Withdrawn the contest data from public use
 - Cancelled Netflix Prize 2
Good news

An older movie rating dataset from GroupLens is still available, and perfectly suitable for the CSS 490 / 590 project.

- Consists of data collected through the MovieLens movie rating website.
- Comes in 3 sizes:
 - MovieLens 100k
 - MovieLens 1M
 - MovieLens 10M

http://www.grouplens.org/node/12
http://movielens.umn.edu/login
MovieLens 100k dataset properties

- 943 users
- 1682 movies
- 100,000 ratings
- 1 - 5 rating scale
- Rating matrix is 6.3% occupied
- Ratings per user
 - min = 20
 - mean = 106
 - max = 737
- Ratings per movie
 - min = 1
 - mean = 59
 - max = 583
Recommender system definition

DOMAIN: some field of activity where *users* buy, view, consume, or otherwise experience *items*

PROCESS:
1. *users* provide *ratings* on *items* they have experienced
2. Take all *< user, item, rating >* data and build a predictive model
3. For a *user* who hasn’t experienced a particular *item*, use model to *predict* how well they will like it (i.e. *predict rating*)
Types of recommender systems

Predictions can be based on either:

- **content-based** approach
 - *explicit* characteristics of users and items

- **collaborative filtering** approach
 - *implicit* characteristics based on similarity of users’ preferences to those of other users
Collaborative filtering algorithms

- Common types:
 - Global effects
 - Nearest neighbor
 - Matrix factorization
 - Restricted Boltzmann machine
 - Clustering
 - Etc.
Nearest neighbor in action

<table>
<thead>
<tr>
<th>User</th>
<th>Movie 1</th>
<th>Movie 2</th>
<th>Movie 3</th>
<th>Movie 4</th>
<th>Movie 5</th>
<th>Movie 6</th>
<th>Movie 7</th>
<th>Movie 8</th>
<th>Movie 9</th>
<th>...</th>
<th>Movie 17770</th>
</tr>
</thead>
<tbody>
<tr>
<td>User 1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>User 2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>User 3</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User 4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>User 5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>User 6</td>
<td></td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>User 7</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>User 8</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>User 9</td>
<td></td>
</tr>
<tr>
<td>User 10</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>User 480189</td>
<td></td>
</tr>
</tbody>
</table>

Identical preferences – strong weight

Similar preferences – moderate weight
Nearest neighbor classifiers

Requires three inputs:
1. The set of stored samples
2. Distance metric to compute distance between samples
3. The value of k, the number of nearest neighbors to retrieve
Nearest neighbor classifiers

To classify unknown record:

1. Compute distance to other training records
2. Identify k nearest neighbors
3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)
Nearest neighbor classification

- Compute distance between two points
 - Example: Euclidean distance
 \[d(x, y) = \sqrt{\sum_i (x_i - y_i)^2} \]

- Options for determining the class from nearest neighbor list
 - Take majority vote of class labels among the \(k \)-nearest neighbors
 - Weight the votes according to distance
 - example: weight factor \(w = 1 / d^2 \)
Nearest neighbor in collaborative filtering

- For our implementation in Project 2:
 - Actually a regression, not a classification.
 - Prediction is a weighted combination of neighbor’s ratings (real number).
 - We consider all neighbors, not the k-nearest subset of neighbors.
 - Since we’re not ranking neighbors by distance, distance no longer relevant.
 - Instead of distance, we calculate similarities that determine weightings of each neighbor’s rating.
Nearest neighbor in action

- For this example:
 - Find every user that has rated movie 10
 - Compute similarity between user 2 and each of those users
 - Weight those users’ ratings according to their similarities
 - Predicted rating for user 2 is sum of other users’ weighted ratings on movie 10

<table>
<thead>
<tr>
<th>User</th>
<th>Movie 1</th>
<th>Movie 2</th>
<th>Movie 3</th>
<th>Movie 4</th>
<th>Movie 5</th>
<th>Movie 6</th>
<th>Movie 7</th>
<th>Movie 8</th>
<th>Movie 9</th>
<th>Movie 10</th>
<th>...</th>
<th>Movie 1777</th>
</tr>
</thead>
<tbody>
<tr>
<td>User 1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User 2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User 3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User 4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User 5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User 6</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User 7</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User 8</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User 9</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Identical preferences – strong weight
Similar preferences – moderate weight
Measuring similarity of users

- For Project 2 we will use *Pearson’s correlation coefficient* (PCC) as a measure of similarity between users.

- Pearson’s correlation coefficient is covariance normalized by the standard deviations of the two variables:

$$\text{corr}(x, y) = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y}$$

 - Always lies in range -1 to 1
Measuring similarity of users

- PCC similarity for two users a and b:

$$PCC(a, b) = \frac{\sum_{j=1}^{n} (r_{a,j} - \bar{r}_a)(r_{b,j} - \bar{r}_b)}{\sqrt{\sum_{j=1}^{n} (r_{a,j} - \bar{r}_a)^2} \sqrt{\sum_{j=1}^{n} (r_{b,j} - \bar{r}_b)^2}}$$

- Both sums are taken over only those movies rated by both a and b (indexed by j)
- $r_{a,j} = \text{rating by user } a \text{ on movie } j$
- $\bar{r}_a = \text{average rating on all movies rated by user } a$
- $n = \text{number of movies rated by both } a \text{ and } b$
Measuring similarity of users

- Calculating PCC on sparse matrix
 - Calculate user average rating using only those cells where a rating exists.
 - Subtract user average rating only from those cells where rating exists.
 - Calculate and sum user-user cross-products and user deviations from average only for those movies where a rating exists for both users.