Classification

Ensemble Methods 2
Random forests

Given: N training samples, p variables.

Algorithm:

1. For $b = 1$ to B:
 a. Draw a bootstrap sample of size N from training data.
 b. Grow a random-forest tree T_b on the bootstrapped data, by recursively repeating the following steps for each terminal node, until the minimum node size n_{min} is reached.
 i. Select m variables at random from the p variables.
 ii. Pick the best variable and split-point among the m.
 iii. Split the node into two child nodes.

2. Output the ensemble of B trees $\{T_b\}$.
Random forests

Given: N training samples, p variables.

Algorithm:

1. For $b = 1$ to B:
 a. Draw a bootstrap sample of size N from training data.
 b. Grow a random-forest tree T_b on the bootstrapped data, by recursively repeating the following steps for each terminal node, until the minimum node size n_{min} is reached.
 i. Select m variables at random from the p variables.
 ii. Pick the best variable and split-point among the m.
 iii. Split the node into two child nodes.

2. Output the ensemble of B trees $\{T_b\}$.

Only difference from bagging with decision trees.

- m typically $\leq \sqrt{p}$ (even as low as 1)
Random forests routinely outperform bagged ensembles, and are often competitive with boosting.
Random forests

- Random forests provide even more reduction of variance than bagged decision trees.
 - But still do not impact bias.

- Benefit appears to be from de-correlation of individual trees.
 - Bootstrap samples still have significant correlation.

- Simpler to train and tune than boosting algorithms.
Random forests

- First implemented in FORTRAN by Leo Breiman and Adele Cutler, and the term trademarked by them.
 http://stat-www.berkeley.edu/users/breiman/RandomForests/cc_home.htm

- Commercial distribution licensed exclusively to Salford Systems.

- Lots of open-source implementations in various languages and machine learning packages.

- Available in MATLAB as class TreeBagger (Statistics Toolbox).
Classifier ensembles

- For improved prediction accuracy (vs. single model) often need 100’s to 1000’s of base classifiers in ensemble

BUT …

- Committee-type classifier ensembles are readily parallelized
Ensemble Cloud Army (ECA)

A Platform for Parallel Processing of Machine Learning Problems in the Amazon Cloud

J. Jeffry Howbert
Insilicos LLC
May 11, 2011
Insilicos LLC: background

- Started 2003
 - Founders: Erik Nilsson, Brian Pratt, Bryan Prazen
- 8 employees
- $4M in grant funding to date (mostly SBIR)
- Focus on mass spec proteomics
 - Software: analysis tools and pipeline
 - Cardiovascular biomarker discovery
ECA project: concept

Machine learning ensembles, trained and used in parallel

Two performance benefits:

- *Ensemble* of models => *better prediction accuracy* than single model (usually)
- Ensembles are readily *parallelized* => *faster computation*

NOTE: Work to date all on *classifiers*, but is being extended to regression and clustering.
R programming language

- Functional language for statistical computing and graphics
- *de facto* standard throughout statistics community
- Hundreds of supporting packages
- Open source
Amazon Web Services (AWS)

Basic resources
AWS basic resources

- **EC2**: Elastic Compute Cloud
 - Configurable compute nodes
 - Virtual machines in a variety of “sizes”
 - On-demand, reserved, or spot instances

- **S3**: Simple Storage Service
 - Store in named S3 “bucket”
 - Holds unlimited number of objects
 - Any type of object, 1 B to 5 TB in size
 - No file system; put and get using name of object
AWS basic resources

- **EBS**: Elastic Block Store
 - Block level storage volumes from 1 GB to 1 TB
 - Can be attached to any running EC2 instance
 - Persist independently of instances

- **AMI**: Amazon Machine Image
 - Pre-configured virtual machine: OS + apps + tools
 - Loads onto EC2 node at launch
 - Thousands available
 - Can customize own AMIs and save for later use
ECA architecture

- EBS
- worker node 1
- worker node 2
- worker node n
- AMIs
- S3
- results
- S3 bucket
- master node
- scripts, data
- control
- config files
- local machine
- data
ECA hardware components

CLOUD

- EC2 nodes
 - Mostly “small” size
 - 32-bit Intel processor, 1.7 GB RAM, 160 GB hard drive
 - $0.085 / hr
 - Limited use of “large” size (64-bit, faster, more memory, etc.)
- S3 buckets for off-node data storage
- EBS volume to store AMIs

LOCAL MACHINE

- Personal computer (Windows)
ECA software components

- Used only open source components

CLOUD: Amazon Machine Image
- Ubuntu Linux OS
- MPI (message passing interface) – MPICH2
- Python
- R statistical language
- R package Rmpi
 - Allows parallel distribution of calculations to a cluster
 - Communicates via underlying MPI

LOCAL MACHINE: Python
- boto – Python wrapper for AWS API; allows calls to cloud resources
- simplejson – Python parser for JSON-formatted config files
ECA system launch (1)

1) **CLOUD**: pre-existing resources
 - S3 bucket
 - AMI stored in EBS

2) **LOCAL MACHINE**: Python script initiates launch
 - Reads config files (JSON format)
 - Uploads data and R scripts to S3
 - Makes request to AWS for one master node
 - Passes control to master node and waits for results

 < job runs autonomously in cloud >
3) **CLOUD**: Python and bash scripts

a) Head node:
 - Requests desired number of worker nodes from AWS
 - Verifies all worker nodes have booted
 - Verifies SSH communication with all worker nodes
 - Boots MPI demon on all nodes, verifies communication around MPI ring
 - Transfers R scripts from S3 bucket to local disk

b) All nodes: transfer data from S3 bucket to local disk

c) Head node: passes control to ensemble R script
Ensemble program flow (1)

SETUP
One master node
Multiple worker nodes
Master is hub for all communication
 Bidirectional communication via MPI between master and each worker
 No worker-worker

R script with all commands for training, testing, etc. on master
Full copy of training and test data on each worker
Ensemble program flow (2)

MAIN CYCLE
1. Master sends command to all workers to perform these tasks in parallel:
 a. Create unique partition of training data, using unique random seed
 b. Train a base classifier on partition
 c. Generate class predictions for test data, using trained classifier
2. Workers automatically return predictions to master
3. Master stores predictions
4. Repeats …
Ensemble program flow (3)

END PROCESSING

All by master:

1. Aggregates predictions from all workers over all cycles
2. Computes most commonly predicted class for each instance in test set, outputs that as ensemble prediction
ECA benchmarks

Datasets

<table>
<thead>
<tr>
<th>Name</th>
<th>Source</th>
<th>Domain</th>
<th>Instances</th>
<th>Features</th>
<th>Feature type(s)</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>satimage</td>
<td>UCI</td>
<td>soil types from satellite images</td>
<td>4435 train, 2000 test</td>
<td>36</td>
<td>numeric (0-255)</td>
<td>6</td>
</tr>
<tr>
<td>covertype</td>
<td>UCI</td>
<td>forest cover types from cartographic variables</td>
<td>581012</td>
<td>54</td>
<td>10 numeric, 44 binary qualitative</td>
<td>7</td>
</tr>
<tr>
<td>jones</td>
<td>Ref. 3</td>
<td>protein secondary structure</td>
<td>209529 train, 17731 test</td>
<td>315</td>
<td>numeric</td>
<td>3</td>
</tr>
</tbody>
</table>
ECA benchmarks

- For ensembles, training subsets must deliver *diversity*, *accuracy*, and *fast computation*.

- For large datasets used with ECA, bootstrap samples are too large for practical computation.

- Instead, much smaller subsets of records are generated by random sampling without replacement.

- From Lecture 3:
 “The key principle for effective sampling is the following:
 - Using a sample will work almost as well as using the entire data set, provided the sample is *representative*.
 - A sample is representative if it has approximately the same distribution of properties (of interest) as the original set of data”
ECA benchmarks

Ensembles have better accuracy than individual component classifiers

Number of instances per base classifier

Classification accuracy, %
ECA benchmarks

Accuracy remains high despite large reduction in features

![Graph showing classification accuracy vs. number of instances per base classifier for different types of classifiers.]

- **Jones**
 - Neural nets, 315 features
 - Neural nets, 157 features
 - Neural nets, 78 features
 - Decision trees, 315 features
 - Decision trees, 157 features
 - Decision trees, 78 features

Jeff Howbert Introduction to Machine Learning Winter 2012 26
Amdahl’s Law

- The potential speedup from parallelization is strictly limited by the portion of the computation that cannot be parallelized.

- Assume proportion P of computation can be parallelized, and proportion $(1 - P)$ is necessarily sequential. The speedup from parallelizing on N processors is:

$$\frac{1}{(1 - P) + \frac{P}{N}}$$

- For example, if $P = 0.9$, maximum possible speedup is 10, no matter how large N is.
ECA benchmarks

Computational performance: ensembles of decision trees

![Graph showing computational performance of ensembles of decision trees. The x-axis represents the number of nodes in a cluster, and the y-axis shows the increase in speed over a single node. Different lines represent different instance sizes: 1000, 2500, 5000, and 10000 instances. The graph also includes lines for two datasets: Jones and covertype. The ideal performance line is shown as a dashed line.](image-url)
ECA benchmarks

Computational performance: ensembles of neural networks

![Graph showing computational performance with increasing number of nodes in cluster for different instance counts.](image)
Important lessons (1)

- Large data handling not as critical as expected
 - Best ensemble accuracy associated with smaller partitions (< 5,000 instances)

- Ensembles with small partitions run much faster than those with larger partitions
Important lessons (2)

- Ensembles with small partitions run much faster than single classifier trained on all of data, and are more accurate.

<table>
<thead>
<tr>
<th>Number of trees</th>
<th>Instances per tree</th>
<th>Processing mode</th>
<th>Number of nodes</th>
<th>Node type</th>
<th>Runtime</th>
<th>Accuracy, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>209529</td>
<td>serial</td>
<td>1</td>
<td>64-bit</td>
<td>2:01:34</td>
<td>58.30</td>
</tr>
<tr>
<td>100</td>
<td>2500</td>
<td>serial</td>
<td>1</td>
<td>64-bit</td>
<td>29:54</td>
<td>66.30</td>
</tr>
<tr>
<td>180</td>
<td>2500</td>
<td>parallel</td>
<td>60</td>
<td>32-bit</td>
<td>5:44</td>
<td>66.66</td>
</tr>
</tbody>
</table>

Jones dataset, ensemble of decision trees
ECA is open source

RMPI version released on SourceForge

ica.sf.net
Occam’s Razor

- Given two models with similar generalization errors, one should prefer the simpler model over the more complex model.

- For complex models, there is a greater chance it was fitted accidentally by errors in data.

- Model complexity should therefore be considered when evaluating a model.
Generalization paradox of ensembles

Ensemble models—built by methods such as *bagging*, *boosting*, and *Bayesian model averaging*—appear dauntingly complex, yet tend to strongly outperform their component models on new data. Doesn’t this violate “Occam’s razor”—the widespread belief that “the simpler of competing alternatives is preferred”? We argue no: if complexity is measured by function rather than form—for example, according to generalized degrees of freedom (GDF)—the razor’s role is restored. On a two-dimensional decision tree problem, bagging several trees is shown to actually have less GDF complexity than a single component tree, removing the generalization paradox of ensembles.

http://www.datamininglab.com/pubs/Paradox_JCGS.pdf
Ensemble methods

Three fundamental reasons an ensemble may work better than a single classifier

statistical

computational

representational