Assignment

circumference
\[= 2\pi r \]

\[\Delta \theta \cdot r \]

\[\frac{\Delta \theta}{\Delta t} = \omega \]

\[v = v_1 \text{ translational velocity} \]
\[v_2 \text{ tangential velocity} \]

\[v = v_1w_1 = v_2w_2 \]

since

\[\begin{cases} r_1 < r_2 \\ \omega_1 > \omega_2 \end{cases} \]
torque = \tau \times F

torque apply on circle 1

\tau_1 = \tau_1 \times F_1

\tau_2 = \tau_2 \times F_1

Don't know \ F_1 ?

So we cons. of energy

\tau_1 \cdot W_1 = \tau_2 \cdot W_2

\frac{\tau_1}{\tau_2} = \frac{W_2}{W_1}

\frac{\tau_1}{\tau_2} = \frac{r_1}{r_2}

\frac{\tau_1}{\tau_2} = \frac{F_1 \cdot d_1}{F_2 \cdot d_2}

\tau_1 \cdot \theta_1 = \tau_2 \cdot \frac{d_2}{d_1}

\tau_1 = r_1 \cdot F_1

\theta_1 = \frac{d_2}{d_1} \cdot \theta_2
Find \(\omega \), \(\omega_2 \) and compare with the theoretical calc.

Question 1: Find \(\omega \)

- Formula:

 \[
 \omega = \frac{\Delta \theta}{\Delta t}
 \]

- Instruction:

 - Attach gear #1 on motor, mark gear on the gear with sharpie

 - Set power at 1

 - Count how many revolutions the gear goes thru in 60 sec
Knowing the point of contact is same velocity on the

(or else the gears will be slipping)

\[V_{\text{tangential on } 1} = V_{\text{tangential on } 2} \]

\[r_1 \omega_1 = r_2 \omega_2 \]

\[\frac{r_1}{r_2} = \frac{W_2}{W_1} \]

(Question 2:

\& couple motor gear to a difference size gear \infty

\begin{enumerate}
\item Calc. \(W_2 \) based on the value you got from \(W_1 \) (use same condition as in question 1)
\item Now using the same procedure as in question 1 & find \(W_2 \)
\item Compare the results \(W_2 \) & \(\infty \)
\[\text{Work} = F \cdot \Delta x \quad \text{(dot product)} \]

\[\text{Force is going same direction as } \Delta x \]
\[\text{Therefore work} = F \Delta x \]

\[\text{F is same between wheel} \]
\[\text{conservation of energy} \]

\[W_1 = W_2 \]

\[F_1 \Delta x_1 = F_2 \Delta x_2 \]
\[(\text{Newton's 3rd Law}) \]

\[F_1 r_1 \theta_1 = F_2 r_2 \dot{\theta}_2 \]

\[\text{power} = F_1 r_1 \frac{\Delta \theta_1}{\Delta t} = F_2 r_2 \frac{\Delta \theta_2}{\Delta t} = \text{power} \]

\[\frac{F_1 r_1}{F_2 r_2} \frac{W_1}{W_2} = \frac{\dot{\theta}_1}{\dot{\theta}_2} \frac{W_1}{W_2} \]

\[(F_1 r_1) W_1 = (F_2 r_2) W_2 \]

\[\frac{\dot{\theta}_1}{\dot{\theta}_2} \frac{W_1}{W_2} \]

Question 3:

\[\frac{\dot{\theta}_2}{\dot{\theta}_1} = \frac{W_1}{W_2} = \frac{r_2}{r_1} \]

(eg. 2)

\(\text{(a) calculate the ratio of output torque } \frac{\dot{\theta}_2}{\dot{\theta}_1} \)

\(\text{use same given condition in input torque } \frac{\dot{\theta}_1}{\dot{\theta}_2} \)
(c) Do the same by using ratio $\frac{V_2}{V_1}$ obtained from question 2.

(c) Compare your results in a & b. What conclusion can you make from this?

- Larger torque is created by output having a larger gear coupled to a smaller input gear.

- Angular velocity is smaller when larger torque is produced.