Markov Chains
(Part 3)

State Classification
State Classification
Accessibility

• State \(j \) is accessible from state \(i \) if \(p_{ij}^{(n)} > 0 \) for some \(n \geq 0 \), meaning that starting at state \(i \), there is a positive probability of transitioning to state \(j \) in some number of steps.

• This is written \(j \leftarrow i \)

• State \(j \) is accessible from state \(i \neq j \) if and only if there is a directed path from \(i \) to \(j \) in the state transition diagram.

• Note that every state is accessible from itself because we allow \(n = 0 \) in the above definition and \(p_{ii}^{(0)} = P(X_0 = i \mid X_0 = i) = 1 > 0 \).
State Classification Example 1

• Consider the Markov chain

\[
P = \begin{bmatrix}
0.4 & 0.6 & 0 & 0 & 0 \\
0.5 & 0.5 & 0 & 0 & 0 \\
0 & 0 & 0.3 & 0.7 & 0 \\
0 & 0 & 0.5 & 0.4 & 0.1 \\
0 & 0 & 0 & 0.8 & 0.2
\end{bmatrix}
\]

• Draw its state transition diagram

• Which states are accessible from state 0?
 States 0 and 1 are accessible from state 0

• Which states are accessible from state 3?
 States 2, 3, and 4 are accessible from state 3

• Is state 0 accessible from state 4?
 No
State Classification Example 2

- Now consider a Markov chain with the following state transition diagram

- Is state 2 accessible from state 0? Yes
- Is state 0 accessible from state 2? No
- Is state 1 accessible from state 0? Yes
- Is state 0 accessible from state 1? No
State Classification

Communicability

• States i and j communicate if state j is accessible from state i, and state i is accessible from state j (denote $j \leftrightarrow i$)

• Communicability is
 – **Reflexive:** Any state communicates with itself
 – **Symmetric:** If state i communicates with state j, then state j communicates with state i
 – **Transitive:** If state i communicates with state j, and state j communicates with state k, then state i communicates with state k

• For the examples, which states communicate with each other?
State Classification
Communicability

• Example 1:

0.6
0.4
0.5
0.5
0.3
0.7
0.1
0.2

0 ↔ 1, 2 ↔ 3 ↔ 4

• Example 2:

0 ↔ 0, 1 ↔ 1, 2 ↔ 2

Markov Chains - 6
State Classes

- Two states are said to be in the same class if the two states communicate with each other, that is \(i \leftrightarrow j \), then \(i \) and \(j \) are in same class.

- Thus, all states in a Markov chain can be partitioned into disjoint classes
 - If states \(i \) and \(j \) are in the same class, then \(i \leftrightarrow j \).
 - If a state \(i \) is in one class and state \(j \) is in another class, then \(i \) and \(j \) do not communicate.

- How many classes exist in the examples?
- Which states belong to each class?
State Classes

- Example 1:

- Example 2:
Gambler’s Ruin Example

- Consider the gambling game with probability $p=0.4$ of winning on any turn

- State transition diagram and one-step transition probability matrix:

- How many classes are there?
 Three: $\{0\}$ $\{1,2\}$ $\{3\}$
Irreducibility

• A Markov chain is irreducible if all states belong to one class (all states communicate with each other).
• If there exists some \(n \) for which \(p_{ij}^{(n)} > 0 \) for all \(i \) and \(j \), then all states communicate and the Markov chain is irreducible.
• If a Markov chain is not irreducible, it is called reducible.
• If a Markov chain has more than one class, it is reducible.
• Are the examples reducible or irreducible?

 Ex 1: Reducible \{0,1\} \{2,3,4\}
 Ex 2: Reducible \{0\} \{1\} \{2\}
 Gambler’s Ruin Ex: Reducible \{0\} \{1,2\} \{3\}
Examples of Irreducible Chains

- **Weather example**

 - Transition diagram:
 - Sun (0) with transition probabilities:
 - Stay in Sun with probability p.
 - Move to Rain with probability q.
 - Move to Sun with probability $1-p$.
 - Move to Rain with probability $1-q$.

- **Inventory example**

 - Transition diagram:
 - States: $0, 1, 2, 3$ (represent inventory levels).
 - Transitions:
 - From 0 to 1, 2, or 3 with probabilities $P(D=1)$, $P(D=2)$, $P(D=3)$.
 - From 1 to 0, 1, or 2 with probabilities $P(D=0)$, $P(D=1)$, $P(D=2)$.
 - From 2 to 0, 1, or 2 with probabilities $P(D=0)$, $P(D=1)$, $P(D=2)$.
 - From 3 to 0 with probability $P(D=0)$.
Periodicity of the Gambler’s Ruin

- Observe: if you start in State 1 at time 0, you can only come back to it in times 2, 4, 6, 8, …
- In other words, 2 is the greatest common denominator of all integers \(n > 0 \), for which \(p_{ii}^{(n)} > 0 \)
- We say, the period of State 1 is 2. The period of State 2 is also 2. And observe, they are in the same class.
- State 0 has a period of 1, called aperiodic
Periodicity

• The **period** of a state i is the greatest common denominator (gcd) of all integers $n > 0$, for which $p_{ii}^{(n)} > 0$

• Periodicity is a *class property*
 – If states i and j are in the same class, then their periods are the same

• State i is called **aperiodic** if there are two consecutive numbers s and $(s+1)$ such that the process can be in state i at these times, i.e., the period is 1
Periodicity Examples

• Which of the following Markov chains are aperiodic?
• Which are irreducible?

\[
P = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix}
\]

Irreducible, because all states communicate
Period = 3

\[
P = \begin{bmatrix}
\frac{1}{3} & \frac{2}{3} & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & \frac{1}{4} & \frac{3}{4}
\end{bmatrix}
\]

Irreducible
Aperiodic

\[
P = \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{3} & \frac{1}{3} \\
0 & 0 & \frac{1}{4} & \frac{3}{4}
\end{bmatrix}
\]

Reducible, 2 classes
Each class is aperiodic

Markov Chains - 14
Transient States

- Consider the gambling example again:
 - Suppose you are in state 1. What is the probability that you will never return to state 1 again?
 - For example, if you win in state 1, and then win again in state 2, then you will never return to state 1 again. The probability this happens in $0.4 \times 0.4 = 0.16$
 - Thus, there is a positive probability that, starting in state 1, you will never return to state 1 again.
 - State 1 is called a transient state.

- In general, a state i is said to be transient if, upon entering state i, there is a positive probability that the process may never return to state i again
- A state i is transient if and only if there exists a state j (different from i) that is accessible from state i, but i is not accessible from j
- In a finite-state Markov chain, a transient state is visited only a finite number of times
Recurrent States

- A state that is not transient is called recurrent.
- State \(i \) is said to be recurrent if, upon entering state \(i \), the process will definitely return to state \(i \).
- Since a recurrent state definitely will be revisited after each visit, it will be visited infinitely often.
- A special type of recurrent state is an absorbing state, where, upon entering this state, the process will never leave it. State \(i \) is an absorbing state if and only if \(p_{ii} = 1 \).
- Recurrence (and transience) is a class property.
- In a finite-state Markov chain, not all states can be transient:
 - Why? Because there has to be another state \(j \) to move to, so there would have to be \(\infty \) states.
Transient and Recurrent States
Examples

• **Gambler’s ruin:**
 – Transient states: \{1, 2\}
 – Recurrent states: \{0\} \{3\}
 – Absorbing states: \{0\} \{3\}

• **Inventory problem**
 – Transient states: None
 – Recurrent states: \{0, 1, 2, 3\}
 – Absorbing states: None
Examples of Transient and Recurrent States

- Transient \{0\} \{1\}, Period = 2
- Recurrent \{2,3\}, Period = 2
- Transient \{0\} \{1\} Aperiodic
- Absorbing \{2\} Aperiodic
- Recurrent \{0,1,2\}
- Period = 3
- Recurrent \{0,1\}, Aperiodic
Ergodic Markov Chains

• In a finite-state Markov chain, not all states can be transient, so if there are transient states, the chain is reducible
• If a finite-state Markov chain is irreducible, all states must be recurrent
• In a finite-state Markov chain, a state that is recurrent and aperiodic is called ergodic
• A Markov chain is called ergodic if all its states are ergodic.
• We are interested in irreducible, ergodic Markov chains...