Parsing with Linguistic Features

Scott Farrar
CLMA, University of Washington
farrar@u.washington.edu

February 3, 2010
Today’s lecture

1. Earley parsing with feature structures
2. Semantic features
3. Homework 4
Incorporating features into a parser

How would we parse with feature structures?

- *these pens*
- *this pens*

NP → ● DT Nom
Incorporating features into a parser

How would we parse with feature structures?

- *these pens*
- *this pens*

NP → • DT Nom

\[
\begin{align*}
\text{DT} & \left[\text{head} \left[\text{agr} \left[\text{number} \quad \text{SG} \right] \right] \right] \\
& \quad \square
\end{align*}
\]
Incorporating features into a parser

How would we parse with feature structures?

- *these pens*
- *this pens*

\[
\text{NP} \rightarrow \bullet \text{DT Nom}
\]

\[
\begin{align*}
\text{DT} & \begin{bmatrix}
\text{head} \begin{bmatrix}
\text{agr} \begin{bmatrix}
\text{number} \text{ SG}
\end{bmatrix}
\end{bmatrix}
\end{bmatrix} \\
\text{NP} & \begin{bmatrix}
\text{head 1}
\end{bmatrix} \\
\text{DT} & \begin{bmatrix}
\text{head 2}
\end{bmatrix} \\
\text{Nom} & \begin{bmatrix}
\text{head 1 agr 2}
\end{bmatrix}
\end{align*}
\]
Incorporating features into a parser

NP → DT • Nom

\[
\begin{align*}
\text{NP} & \quad \text{head} \ [1] \\
\text{DT} & \quad \text{head} \ [\text{agr} \ [2] \ [\text{number} \ \text{SG}]]] \\
\text{Nom} & \quad \text{head} \ [1] \ [\text{agr} \ [2]]
\end{align*}
\]

These structures will not unify, so no new structure will be entered into chart by completer.
Incorporating features into a parser

NP \rightarrow DT • Nom

\[
\begin{align*}
\text{NP} & \quad \text{head} \ [1] \\
\text{DT} & \quad \text{head} \ [\text{agr} \ [2] \ [\text{number} \ SG]]] \\
\text{Nom} & \quad \text{head} \ [1] \ [\text{agr} \ [2]] \\
\text{Nom} & \quad \text{head} \ [\text{agr} \ [\text{number} \ PL]]]
\end{align*}
\]
Incorporating features into a parser

NP → DT • Nom

NP → head [1] head [agreement 2 [number singular]]
DT → head [agreement 2 [number singular]]
Nom → head [agreement 2]
Nom → head [agreement [number plural]]

These structures will not unify, so no new structure will be entered into chart by completer.
Today’s lecture

1. Earley parsing with feature structures

2. Semantic features

3. Homework 4
What makes a good feature?

- **person**: *I go, you go, he goes*
What makes a good feature?

- **person**: *I go, you go, he goes*
- **number**: *he dances, they dance*
What makes a good feature?

- **person**: *I go, you go, he goes*
- **number**: *he dances, they dance*
- **case**: *he brings John, John brings him*
What makes a good feature?

- **person**: I go, you go, he goes
- **number**: he dances, they dance
- **case**: he brings John, John brings him
- **tense**: go, went, gone
What makes a good feature?

- **person**: *I go, you go, he goes*
- **number**: *he dances, they dance*
- **case**: *he brings John, John brings him*
- **tense**: *go, went, gone*
- **modality**: *may, can,*
What makes a good feature?

- **person**: *I go, you go, he goes*
- **number**: *he dances, they dance*
- **case**: *he brings John, John brings him*
- **tense**: *go, went, gone*
- **modality**: *may, can,*
- **honorifics** (e.g., Japanese)
What makes a good feature?

- **person**: *I go, you go, he goes*
- **number**: *he dances, they dance*
- **case**: *he brings John, John brings him*
- **tense**: *go, went, gone*
- **modality**: *may, can,*
- **honorifics** (e.g., Japanese)
- **evidentiality** (e.g., Shipibo)
What makes a good feature?

- **person**: *I go, you go, he goes*
- **number**: *he dances, they dance*
- **case**: *he brings John, John brings him*
- **tense**: *go, went, gone*
- **modality**: *may, can,*
- **honorifics** (e.g., Japanese)
- **evidentiality** (e.g., Shipibo)
- **noun class** (e.g., Chinese)
Tense in Cocama-Cocamilla

Example

Ritama- ca tuts- ui
town- to go- HOD.PST
‘I went to town today.’

Example

Ritama- ca tutsu- icua’
town- to go- HEST.PST
‘I went to town yesterday/a few days ago.’

Example

Ritama- ca tutsu- tsuri
town- to go- REM.PST
‘I went to town a long time ago.’
Tense in Cocama-Cocamilla

Example
Ritama-ca tuts-ui
town-to go-HOD.PST
‘I went to town today.’

Example
Ritama-ca tutsu-icua’
town-to go-HEST.PST
‘I went to town yesterday/a few days ago.’
Tense in Cocama-Cocamilla

Example

Ritama- ca tuts- ui
town- to go- HOD.PST
‘I went to town today.’

Example

Ritama- ca tutsu- icua’
town- to go- HEST.PST
‘I went to town yesterday/a few days ago.’

Example

Ritama- ca tutsu- tsuri
town- to go- REM.PST
‘I went to town a long time ago.’
What makes a good feature?

Posit a feature when there is some contrast in the grammar.

Example

*Ritama- ca tuts -
town- to go- PST
‘I went to town.’
What makes a good feature?

Posit a feature when there is some contrast in the grammar.

Example

*Ritama- ca tuts -
town- to go- PST
‘I went to town.’

In Cocama-Cocamilla, there seems to be a required **remoteness** feature, orthogonal to but dependent on the tense feature, cf. the remote future to the remote past.
Morphosyntactic features

Definition

A **morphosyntactic feature** is a grammatical feature that influences the morphological or syntactic behavior of the units it associates with.
Some English grammatical phenomena

- number feature on nouns
 these cats
 *these cat
Some English grammatical phenomena

- number feature on nouns
 these cats
 *these cat
- person feature on verbs
 I know.
 *I knows.
Some English grammatical phenomena

- number feature on nouns
 these cats
 *these cat

- person feature on verbs
 I know.
 *I knows.

- case feature on object pronouns
 We like him.
 *We like he.
Some English grammatical phenomena

- number feature on nouns
 these cats
 *these cat

- person feature on verbs
 I know.
 *I knows.

- case feature on object pronouns
 We like him.
 *We like he.

- countable feature on nouns
 I am going to get my hair cut.
 ?I am going to get my hairs cut.
Semantic features

Definition

A **semantic feature** is a grammatical feature that influences the semantic behavior of the units it associates with. By *semantic behavior* I refer to the way meaning is constructed (more on that in a later lecture).
Semantic features

Definition

A **semantic feature** is a grammatical feature that influences the semantic behavior of the units it associates with. By *semantic behavior* I refer to the way meaning is constructed (more on that in a later lecture).

Example

?The dogs feathers were plucked.
Semantic features

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A semantic feature is a grammatical feature that influences the semantic behavior of the units it associates with. By semantic behavior I refer to the way meaning is constructed (more on that in a later lecture).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>?The dogs feathers were plucked.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>?The lamp is on the corner. (corner of room)</td>
</tr>
</tbody>
</table>
Semantic features

Definition

A **semantic feature** is a grammatical feature that influences the semantic behavior of the units it associates with. By *semantic behavior* I refer to the way meaning is constructed (more on that in a later lecture).

Example

?The dogs feathers were plucked.

Example

?The lamp is on the corner. (corner of room)

Example

?Colorless green ideas sleep furiously.
Semantic feature inventory

Mant types of semantic features have been posited:

- animacy: inanimate, animate
- natural gender: male, female, neuter
- natural kind: artifact, vegetable, solid object, red thing
- size: large, average, small, tiny
- spatial: 0D, 1D, 2D, 3D

Example:
The woman said she was ill.
The woman said he was ill.
Semantic feature inventory

Mant types of semantic features have been posited:

- **animacy**: inanimate, animate
Semantic feature inventory

Mant types of semantic features have been posited:

- **animacy**: inanimate, animate
- **natural gender**: male, female, neuter
Semantic feature inventory

Mant types of semantic features have been posited:

- **animacy**: inanimate, animate
- **natural gender**: male, female, neuter
- **natural kind**: artifact, vegetable, solid object, red thing
Semantic feature inventory

Mant types of semantic features have been posited:

- **animacy**: inanimate, animate
- **natural gender**: male, female, neuter
- **natural kind**: artifact, vegetable, solid object, red thing
- **size**: large, average, small, tiny
Mant types of semantic features have been posited:

- **animacy**: inanimate, animate
- **natural gender**: male, female, neuter
- **natural kind**: artifact, vegetable, solid object, red thing
- **size**: large, average, small, tiny
- **spatial**: 0D, 1D, 2D, 3D
Semantic feature inventory

Mant types of semantic features have been posited:

- **animacy**: inanimate, animate
- **natural gender**: male, female, neuter
- **natural kind**: artifact, vegetable, solid object, red thing
- **size**: large, average, small, tiny
- **spatial**: 0D, 1D, 2D, 3D

Example:
The woman said she was ill.
The woman said he was ill.
Semantic feature inventory

Mant types of semantic features have been posited:

- **animacy**: inanimate, animate
- **natural gender**: male, female, neuter
- **natural kind**: artifact, vegetable, solid object, red thing
- **size**: large, average, small, tiny
- **spatial**: 0D, 1D, 2D, 3D

Example

The woman said she was ill.

?The woman said he was ill.
More examples

Example

the woman finished the race in ten minutes.
?the woman finished the race for ten minutes.
More examples

Example
the woman finished the race in ten minutes .
?the woman finished the race for ten minutes .

Example
The Sherpa reached the summit in ten minutes .
?The Sherpa reached the summit for ten minutes.
More examples

Example
the woman finished the race in ten minutes.
?the woman finished the race for ten minutes.

Example
The Sherpa reached the summit in ten minutes.
?The Sherpa reached the summit for ten minutes.

Example
Phelps held his breath for ten minutes.
?Phelps held his breath in ten minutes.
More examples

Example
the woman finished the race in ten minutes .
? the woman finished the race for ten minutes .

Example
The Sherpa reached the summit in ten minutes .
? The Sherpa reached the summit for ten minutes .

Example
Phelps held his breath for ten minutes .
? Phelps held his breath in ten minutes .

A possible semantic feature is **event contour** with values
\(\langle \text{instantaneous, durational, inceptive, . . .} \rangle \)
More examples

Example
bald men and rocks are smooth.
?bald men and rocks are smooth.
More examples

Example

bald men and rocks are smooth .
?bald men and rocks are smooth .

A possible semantic feature is Animacy with values $\langle \text{Animate}, \text{Inanimate} \rangle$
More examples

Example

the water is in the glass .
?the waters are in the glass .
More examples

Example

the water is in the glass.
?the waters are in the glass.

A possible semantic feature is **Countability** with values \(\langle \text{Countable, Uncountable} \rangle\)
More examples

Example

the water is in the glass.
?the waters are in the glass.

A possible semantic feature is **Countability** with values \(\langle \text{Countable}, \text{Uncountable} \rangle\)

Example

horses eat hay.
?horses eat rocks.
More examples

Example
the water is in the glass.
?the waters are in the glass.

A possible semantic feature is **Countability** with values \langle Countable, Uncountable \rangle

Example
horses eat hay.
?horses eat rocks.

A possible semantic feature is **Edibility** with values \langle Edible, Inedible \rangle
Semantic features and parsing

Semantic features can be useful for parsing, e.g., adjective scoping:
Semantic features and parsing

Semantic features can be useful for parsing, e.g., adjective scoping:

Example

(Old men) and (women) play bingo.
Semantic features and parsing

Semantic features can be useful for parsing, e.g., adjective scoping:

Example
(Old men) and (women) play bingo.

Example
(Old (men and women)) play bingo.
Semantic features and parsing

Semantic features can be useful for parsing, e.g., adjective scoping:

Example
(Old men) and (women) play bingo.

Example
(Old (men and women)) play bingo.

Example
(Sleeping men) and (books) lie flat.
Semantic features and parsing

Semantic features can be useful for parsing, e.g., adjective scoping:

Example
(Old men) and (women) play bingo.

Example
(Old (men and women)) play bingo.

Example
(Sleeping men) and (books) lie flat.

Example
? (Sleeping (men and books) lie flat.)
Today’s lecture

1. Earley parsing with feature structures

2. Semantic features

3. Homework 4
Homework 4

- Worth 10 pts. (10% of grade)
- Write a grammar using various morphosyntactic and semantic features
- Parse simple sentences using the feature-enabled Earley chart parser
- Return no parse for ungrammatical sentences