Notes on Fatigue Design

While it is always much preferred to use actual values for fatigue strength, for the purposes of this course, you will usually use an approximation to the S-N diagram. Note that this corresponds to the median fatigue properties of the metal, i.e. 50% of the specimens will have survived for points below the line shown above.

1. Obtain the basic endurance limit for the material to be used:
For steels use \(S_e' = 0.504 \ S_u \) (\(S_u \leq 1460 \) MPa)
\[S_e' = 740 \text{ MPa} \ (S_u > 1460 \text{ MPa}) \]

For Aluminum alloys use \(S_e' = 0.4 \ S_u \) (\(S_u \leq 350 \) MPa)
\[S_e' = 140 \text{ MPa} \ (S_u > 350 \text{ MPa}) \]

For life < 10^6 cycles, obtain the fatigue strength \(S_n \) as shown in Section 7.8 (Shigley 7ed).

2. Correction for load type: multiply the basic endurance limit by a load factor \(k_c \).

For infinite life, use \(k_c = 1.0 \) for pure bending
\(k_c = 0.9 \) for pure axial loading
\(k_c = 0.58 \) for pure torsion on round shafts.

For other, more general, cases of biaxial loading, use the distortion energy theory, i.e. find the principal stresses \(\sigma_1 \) and \(\sigma_2 \). Then find the equivalent stress
\[\sigma_e = \left[\sigma_1^2 - \sigma_1 \sigma_2 + \sigma_2^2 \right]^{0.5}. \]

Now relate this to the endurance limit or fatigue strength:
\[\sigma_e = \frac{S_e}{n} \text{ or } \sigma_e = \frac{S_n}{n} \]
3. Surface finish correction: obtain a surface finish factor k_a from Table 7.4 in the text. Note that this is for steels only. For the purposes of this course only, you may use this data for Al alloys also.

4. Size effects: apply a size factor k_b given by –

 $k_b = 1.0$ for pure axial loading and,

 $k_b = 1.24d^{-0.107}$ \((2.79 \leq d \leq 51 \text{ mm}) \)

 $k_b = 1.51d^{-0.157}$ \((51 < d \leq 254 \text{ mm}) \)

Both of the above apply strictly only to fully reversed rotating bending or torsion of round shafts. For other situations, you may use an equivalent diameter d_e in the above relations:

For a rectangular section in bending, use $d_e = 0.808 \sqrt{hb}$ where h,b are the height and breadth of the section.

For a circular section in non rotating bending, use $d_e = 0.370d$ where h,b are the height and breadth of the section.

5. Reliability factor k_e: the above values for fatigue strength are all for the median life, i.e. a reliability of 50%. This is clearly not useful for design. Use the following factors to correct S_e’ for the desired reliability value:

<table>
<thead>
<tr>
<th>Reliability</th>
<th>k_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>0.897</td>
</tr>
<tr>
<td>95%</td>
<td>0.868</td>
</tr>
<tr>
<td>99%</td>
<td>0.814</td>
</tr>
<tr>
<td>99.9%</td>
<td>0.753</td>
</tr>
<tr>
<td>99.99%</td>
<td>0.702</td>
</tr>
</tbody>
</table>
6. In summary you can obtain the actual endurance limit S_e at a specific location on a specific component by multiplying the basic endurance limit S_e' by the above factors:

$$S_e = k_a k_b k_c S_e'$$

The temperature factor k_d may be taken as 1.0 for normal temperatures.

7. Stress concentrations: first get the static stress concentration factor k_t from published charts or tables.(see Table A.15 in Shigley 7ed.)

Then find q from Figures 7.20 and 7.21 in Shigley 7ed.

Get $k_f = q(k_t - 1) + 1$ Note that you may have to get different factors for different combined loads such as bending and torsion. Apply each factor to the appropriate component. It is common to only apply the k_f values to the alternating stress components σ_{xa}, σ_{ya} and τ_{xya}.