Inferences of Competence from Faces Predict Election Outcomes

Alexander Todorov,1,2* Anesu N. Mandisodza,1† Amir Goren,1 Crystal C. Hall1

We show that inferences of competence based solely on facial appearance predicted the outcomes of U.S. congressional elections better than chance (e.g., 68.8% of the Senate races in 2004) and also were linearly related to the margin of victory. These inferences were specific to competence and occurred within a 1-second exposure to the faces of the candidates. The findings suggest that rapid, unreflective trait inferences can contribute to voting choices, which are widely assumed to be based primarily on rational and deliberative considerations.

Faces are a major source of information about other people. The rapid recognition of familiar individuals and communication cues (such as expressions of emotion) is critical for successful social interaction (1). However, people go beyond the inferences afforded by a person’s facial appearance to make inferences about personal dispositions (2, 3). Here, we argue that rapid, unreflective trait inferences from faces influence consequential decisions. Specifically, we show that inferences of competence, based solely on the facial appearance of political candidates and with no prior knowledge about the person, predict the outcomes of elections for the U.S. Congress.

In each election cycle, millions of dollars are spent on campaigns to disseminate information about candidates for the U.S. House of Representatives and Senate and to convince citizens to vote for these candidates. Is it possible that quick, unreflective judgments based solely on facial appearance can predict the outcomes of these elections? There are many reasons why inferences from facial appearance should not play an important role in voting decisions. From a rational perspective, information about the candidates should override any fleeting initial impressions. From an ideological perspective, party affiliation should sway such impressions. Party affiliation is one of the most important predictors of voting decisions in congressional elections (4). From a voter’s subjective perspective, voting decisions are justified not in terms of the candidate’s looks but in terms of the candidate’s position on issues important to the voter.

Yet, from a psychological perspective, rapid automatic inferences from the facial appearance of political candidates can influence processing of subsequent information about these candidates. Recent models of social cognition and decision-making (5, 6) posit a qualitative distinction between fast, unreflective, effortless “system 1” processes and slow, deliberate, effortful “system 2” processes. Many inferences about other people, including inferences from facial appearance,
can be characterized as system 1 processes (7, 8). The implications of the dual-process perspective are that person impressions can be formed “on-line” in the very first encounter with the person and can have subtle and often subjectively unrecognized effects on subsequent deliberative judgments.

Competence emerges as one of the most important trait attributes on which people evaluate politicians (9–11). If voters evaluate political candidates on competence, inferences of competence from facial appearance could influence their voting decisions. To test this hypothesis, we asked naive participants to evaluate candidates for the U.S. Senate (2000, 2002, and 2004) and House (2002 and 2004) on competence (12). In all studies, participants were presented with pairs of black-and-white head-shot photographs of the winners and the runners-up (Fig. 1A) from the election races. If participants recognized any of the faces in a race pair, the data for this pair were not used in subsequent analyses. Thus, all findings are based on judgments derived from facial appearance in the absence of prior knowledge about the person.

As shown in Table 1, the candidate who was perceived as more competent won in 71.6% of the Senate races and in 66.8% of the House races (13). Although the data for the 2004 elections were collected before the actual elections (14), there were no differences between the accuracy of the prospective predictions for these elections and the accuracy of the retrospective predictions for the 2000 and 2002 elections (15). Inferences of competence not only predicted the winner but also were linearly related to the margin of victory. To model the relation between inferred competence and actual votes, we computed for each race the difference in the proportion of votes for the Senate [(right – votes of candidate on the left)/(sum of votes)]. Scores below 0 indicate that the candidate on the right won the election; scores above 0 indicate that the candidate on the right won the election. [Photos in (A): Capitol Advantage]

Table 1. Percentage of correctly predicted races for the U.S. Senate and House of Representatives as a function of the perceived competence of the candidates. The percentages indicate the races in which the candidate who was perceived as more competent won the race. The \( \chi^2 \) statistic tests the proportion of correctly predicted races against the chance level of 50%.

<table>
<thead>
<tr>
<th>Election</th>
<th>Correctly predicted</th>
<th>( \chi^2 )</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S. Senate</td>
<td></td>
</tr>
<tr>
<td>2000 ( n = 30 )</td>
<td>73.3%</td>
<td>6.53 ( P &lt; 0.011 )</td>
</tr>
<tr>
<td>2002 ( n = 33 )</td>
<td>72.7%</td>
<td>6.82 ( P &lt; 0.009 )</td>
</tr>
<tr>
<td>2004 ( n = 32 )</td>
<td>68.8%</td>
<td>4.50 ( P &lt; 0.034 )</td>
</tr>
<tr>
<td>Total ( n = 95 )</td>
<td>71.6%</td>
<td>17.70 ( P &lt; 0.001 )</td>
</tr>
<tr>
<td></td>
<td>U.S. House of Representatives</td>
<td></td>
</tr>
<tr>
<td>2002 ( n = 321 )</td>
<td>66.0%</td>
<td>33.05 ( P &lt; 0.001 )</td>
</tr>
<tr>
<td>2004 ( n = 279 )</td>
<td>67.7%</td>
<td>35.13 ( P &lt; 0.001 )</td>
</tr>
<tr>
<td>Total ( n = 600 )</td>
<td>66.8%</td>
<td>68.01 ( P &lt; 0.001 )</td>
</tr>
</tbody>
</table>

The findings show that 1-s judgments of competence suffice to predict the outcomes of actual elections, but perhaps people are making global inferences of likability rather than specific inferences of competence. To address this alternative hypothesis, we asked participants to make judgments on seven different trait dimensions: competence, intelligence, leadership, honesty, trustworthiness, charisma, and likability (21). From a simple halo-effect perspective (22), participants should evaluate the candidates in the same manner across traits. However, the trait judgments were highly differentiated. Factor analysis showed that the judgments clustered in three distinctive factors: competence (competence, intelligence, leadership), trust (honesty, trustworthiness), and likability (charisma, likability), each accounting for more than 30% of the variance in the data (table S1). More important, only the judgments forming the competence factor predicted the outcomes of the elections. The correlation between the mean score across the three judgments (competence, intelligence, leadership) and differences in votes was 0.58 \( P < 0.001 \). In contrast to competence-related inferences, neither the trust-related inferences \( (r = -0.09, P = 0.65) \) nor the likability-related inferences \( (r = -0.17, P = 0.38) \) predicted differences in votes. The correlation between the competence judgment...
alone and differences in votes was 0.55 ($P < 0.002$), and this judgment correctly predicted 70% of the Senate races ($P < 0.028$). These findings show that people make highly differentiated trait inferences from facial appearance and that these inferences have selective effects on decisions.

We also ruled out the possibility that the age, attractiveness, and/or familiarity with the faces of the candidates could account for the relation between inferences of competence and election outcomes. For example, older candidates can be judged as more competent (23) and be more likely to win. Similarly, more attractive candidates can be judged more favorably and be more likely to win (24). In the case of face familiarity, though unrecognized by our participants, incumbents might be more familiar than challengers, and participants might have misattributed this familiarity to competence (25). However, a regression analysis controlling for all judgments showed that only the significant predictor of differences in votes was competence (Table 2). Competence alone accounted for 30.2% of the variance for the analyses of all Senate races and 45.0% of the variance for the races in which candidates were of the same sex and ethnicity. Thus, all other judgments combined contributed only 4.7% of the variance in the former analysis and less than 1.0% in the latter analysis.

Actual voting decisions are certainly based on multiple sources of information other than inferences from facial appearance. Voters can use this additional information to modify initial impressions of political candidates. However, from a dual-system perspective, correction of intuitive system 1 judgments is a prerogative of system 2 processes that are attention-dependent and are often anchored on intuitive system 1 judgments. Thus, correction of initial impressions may be insufficient (26). In the case of voting decisions, these decisions can be anchored on initial inferences of competence from facial appearance. From this perspective, in the absence of any other information, voting preferences should be closely related to such inferences. In real-life voting decisions, additional information may weaken the relation between inferences from faces and decisions but may not change the nature of the relation.

To test this hypothesis, we conducted simulated voting studies in which participants were asked to choose the person they would have voted for in a political election (27). If voting preferences based on facial appearance derive from inferences of competence, the revealed preferences should be highly correlated with competence judgments. As shown in Fig. 2, the correlation was 0.83 ($P < 0.001$) (28). By comparison, the correlation between competence judgments and actual differences in votes was 0.56 ($P < 0.001$). These findings suggest that the additional information that voters had about the candidates diluted the effect of initial impressions on voting decisions. The simulated votes were also correlated with the actual votes ($r_{63} = 0.46, P < 0.001$) (29, 30). However, when controlling for inferences of competence, this correlation dropped to 0.01 ($P = 0.95$), which suggests that both simulated and actual voting preferences were anchored on inferences of competence from facial appearance.

Our findings have challenging implications for the rationality of voting preferences, adding to other findings that consequential decisions can be more “shallow” than we would like to believe (31, 32). Of course, if trait inferences from facial appearance are correlated with the underlying traits, the effects of facial appearance on voting decisions can be normatively justified. This is certainly an empirical question that needs to be addressed. Although research has shown that inferences from thin slices of nonverbal behaviors can be surprisingly accurate (33), there is no good evidence that trait inferences from facial appearance are accurate (34–39). As Darwin recollected in his autobiography (40), he was almost denied the chance to take the historic Beagle voyage—the one that enabled the main observations of his theory of evolution—on account of his nose. Apparently, the captain did not believe that a person with such a nose would “possess sufficient energy and determination.”

### References and Notes

10. In one of our studies, 143 participants were asked to rate the importance of 13 different traits in considering a person for public office. These traits included competence, trustworthiness, likability, and 10 additional traits mapping into five trait dimensions that are generally believed by personality psychologists to explain the structure of personality: extraversion, neuroticism, conscientiousness, agreeableness, and openness to experience (11). Competence was rated as the most important trait. The mean importance assigned to competence was 6.65 (SD = 0.69) on a scale...
Mammalian Toll-like receptors (TLRs) play an important role in the innate recognition of pathogens by dendritic cells (DCs). Although TLRs are clearly involved in the detection of bacteria and viruses, relatively little is known about their function in the innate response to eukaryotic microorganisms. Here we identify a profilin-like molecule from the protozoan parasite Toxoplasma gondii that generates a potent interleukin-12 (IL-12) response in murine DCs that is dependent on myeloid differentiation factor 88. T. gondii profilin activates DCs through TLR11 and is the first chemically defined ligand for this TLR. Moreover, TLR11 is required in vivo for parasite-induced IL-12 production and optimal resistance to infection, thereby establishing a role for the receptor in host recognition of protozoan pathogens.

**TLR11 Activation of Dendritic Cells by a Protozoan Profilin-Like Protein**

Felix Yarovinsky,† Dekai Zhang,§ John F. Andersen,✉
Gerard L. Bannenberg,† Charles N. Serhan,§ Matthew S. Hayden,∥
Sara Hiery,† Fayyaz S. Sutterwala,∥ Richard A. Flavell,∥
Sankar Ghosh,∥ Alan Sher†

Mammalian Toll-like receptors (TLRs) play a fundamental role in the initiation of immune responses to infectious agents through their recognition of conserved microbial molecular patterns (1). TLR signaling in antigen-presenting cells, such as dendritic cells (DCs), results in the production of cytokines and costimulatory molecules that are required for initiation of the adaptive immune response (2, 3). Human and mouse TLR family members have been shown to have distinct ligand specificities, recognizing molecular structures such as lipopeptide (TLR2) (4), lipopolysaccharide (TLR4) (5, 6), flagellin (TLR5) (7), double- and single-stranded RNA (TLR3 and TLR7) (8–11), and CpG motifs of DNA (TLR9) (12). Although several TLRs have been shown to be important for immune responses to microbial products in vitro, their role in host resistance to infection appears to be complex and not