Testing for convergence (continued): \(S = \sum_{n=1}^{\infty} a_n \)

- Assume \(S \) passes prelim. test, i.e. \(\lim_{n \to \infty} a_n = 0 \)

 e.g. \(S_{\text{harm}} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots \quad \text{harmonic series} \)

 or \(S_{\text{alt-harm}} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots \quad \text{alternating harmonic series} \)

Aside: \(S \) may have terms of both signs,

 e.g. \(S_{\text{alt-harm}} \)

 If we consider, instead of \(S \), the related series \(\tilde{S} = \sum_{n=1}^{\infty} |a_n| \), then

 \(\tilde{S} \) is less convergent than \(S \) (since no cancellation)

 \(\Rightarrow \) If \(\tilde{S} \) converges, then so does \(S \) (N.B. Converse is not true)

 Challenge: make this argument watertight.

 - In this case we say that \(S \) is "absolutely convergent," which is stronger than convergent.

 - Clearly if all \(a_n \) have the same sign, then \(\tilde{S} = \pm S \) (convergence = abs. conv.)

 - For the moment, we'll study absolute convergence, or, equivalently, consider series w/ all coefficients having the same sign.
Comparison test

(a) Let $C = \sum_{n=1}^{\infty} c_n$, with $c_n > 0$, be a convergent series.

Then, if $0 \leq a_n \leq c_n$ for all $n \geq N$,

$$S = \sum_{n=1}^{\infty} a_n$$

converges.

(b) If $D = \sum_{n} d_n$, with $d_n > 0$, is divergent, and $a_n \geq d_n$ for all $n \geq N$, then S diverges.

Why? In case (a) $0 < \sum_{n=N}^{\infty} a_n \leq \sum_{n=N}^{\infty} c_n < \infty$

[Strictly speaking—need "monotone convergence theorem"][1]

So $S = \sum_{n=1}^{N-1} a_n + \sum_{n=N}^{\infty} a_n = \text{finite, so convergent}$

manifestly finite

finite from above

Similarly for (b).

Comparison test useful when have a catalog of series whose convergence or divergence is known.
Examples:

§1.6 # 4(a)

\[S = \sum_{n=1}^{\infty} \frac{1}{2^n + 3^n} \quad \text{Geometric,} \quad r = \frac{1}{3} < 1 \Rightarrow \text{convergent} \]

\[C = \sum_{n=1}^{\infty} \frac{1}{3^n} \quad \text{convergent} \]

\[0 < a_n < c_n \quad \forall n \Rightarrow S \text{ convergent} \]

"for all"

\[\sqrt[n]{a_n} \]

§1.6 # 5

\[S = \sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n}} = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots \]

\[D = \sum_{n=1}^{\infty} \frac{1}{n} = \text{harmonic series} - \text{will see} \]

we will see divergent soon

\[a_n \geq d_n \quad \forall n \Rightarrow S \text{ divergent} \]
Integral test

\[S = \sum_{n=1}^{\infty} a_n \]

Conditions
- \(a_n \geq a_{n+1} \geq 0 \quad \forall \ n \geq N \)
 - i.e. positive, monotonically decreasing terms at large \(n \)
- Need an expression for \(a_n \) valid for all real \(n \)
 - Not just integers
 - E.g. \(\frac{1}{n^2} \), \(\frac{1}{n\ln(n)} \), \(\frac{1}{n} \)

Results
- If \(\int_{a}^{\infty} a_n \, dn \) is finite at upper limit
 - Then \(S \) converges
- If \(\int_{a}^{\infty} a_n \, dn \) diverges at upper limit
 - Then \(S \) diverges

Examples
- Harmonic series: \(a_n = \frac{1}{n} \)
 - \(\int_{1}^{\infty} \frac{1}{n} \, dn = \left[\ln(n) \right]_{1}^{\infty} = \infty \)
 - \(\Rightarrow \) diverges
- \(a_n = \frac{1}{n^2} \)
 - \(\int_{1}^{\infty} \frac{1}{n^2} \, dn = \left[-\frac{1}{n} \right]_{1}^{\infty} = 0 \)
 - \(\Rightarrow \) converges.

N.B. Integral test is powerful, but we must be able to do the integral.
Why does integral test work? See Boas Figs 6.1 & 6.2

e.g.

\[\sum_{n=N}^{\infty} a_n \text{ given by sum of areas of rectangles} \]

\[\int_{n=N}^{\infty} a_n \, dn \text{ given by red shaded area} \]

Clearly \[\sum_{n=N}^{\infty} a_n > \int_{N}^{\infty} a_n \, dn \]

so if \[\int_{N}^{\infty} a_n \, dn = \infty \] then sum diverges

(Recall \[\sum_{n=1}^{N} a_n \] is always finite – divergence only occurs when consider \(\infty \) # of terms.)
Ratio test: weaker than integral test, but often useful in practice

Let \(p_n = \left| \frac{a_{n+1}}{a_n} \right| \) be the ratio of successive terms

and assume \(p = \lim_{n \to \infty} p_n \) exists

Then, if \(p < 1 \) \(\sum a_n \) converges absolutely

while if \(p > 1 \) \(S \) diverges

If \(p = 1 \), ratio test does not give an answer

Examples:

- \(a_n = \frac{1}{n!} \) (hard to integrate) \(\Rightarrow p_n = \frac{n!}{(n+1)!} = \frac{1}{n+1} \Rightarrow p = 0 \)

 \(\Rightarrow \) convergent

- \(\#1.6 \) \#24 \(a_n = \frac{3^{2n}}{2^n} \) \(S = \sum_{n=0}^{\infty} a_n = 1 + \frac{9}{8} + \frac{81}{64} + \ldots \)

 Looks divergent... let's check w/ ratio test
 (could use prelude test too).

 \(p_n = \frac{3^2}{2^3} = \frac{9}{8} = p > 1 \Rightarrow \) divergent
Sketch of proof of ratio test (see Boas §1.6 #30)

if \(\rho < 1 \)

- Let \(\sigma \) be such that \(\rho < \sigma < 1 \)

- \(\exists N \) ("there exists an \(N \)) s.t. \(p_n < \sigma \ \forall n \geq N \)

 - e.g. \(\frac{p_n}{p_{n+1}} \) vs. \(\rho \)

 - \(\Rightarrow \ |a_{N+1}| < \sigma |a_N| \), \(|a_{N+2}| < \sigma |a_{N+1}| \), etc.,

- Now consider convergent geometric series

 \[
 C = \sum_{n=1}^{\infty} \frac{|a_n|}{\sigma^n} \quad \text{for which } p_n = \sigma
 \]

- We observe \(c_N = |a_N| \), \(c_{N+1} = \sigma |a_N| > |a_{N+1}| \), \(c_{N+2} > |a_{N+2}| \), etc.,

- Use comparison test

 \[
 \Rightarrow S = \sum_n |a_n| \text{ is convergent}
 \]

 \[
 \Rightarrow S = \sum_n a_n \text{ converges absolutely.}
 \]

[Similar argument works for \(\rho > 1 \)]
"Combined" or "Special comparison" test for $S = \sum_{n=1}^{\infty} a_n$

small, but important, extension of comparison test

(a) If $C = \sum_{n=1}^{\infty} c_n$ converges (with $c_n > 0$),
and $\lim_{n \to \infty} \frac{|a_n|}{c_n} < \infty$, then S converges.

(b) If $D = \sum_{n=1}^{\infty} d_n$ diverges (with $d_n > 0$),
and $\lim_{n \to \infty} \frac{|a_n|}{d_n} > 0$, then S diverges.

Key point: only terms at large n matter.

Proof: see §1.6 #37

Ex: §1.6 #36 $a_n = \frac{\sqrt{n^3 + 5n - 1}}{n^2 - \sin(n^3)}$ Weird!

Note $a_n \xrightarrow[n \to \infty]{} \frac{\sqrt{n^3}}{n^2} = \frac{1}{\sqrt{n}}$

So if $d_n = \frac{1}{\sqrt{n}}$ then $\lim_{n \to \infty} \frac{a_n}{d_n} = 1 > 0$ for $n \geq 1$.

Since Σd_n diverges (see above) we learn that S diverges.