Part I. [29 points] The transverse displacement of a traveling harmonic wave on a stretched rope is \(D(x,t) = 0.03 \cos(3.4x - 6.8t) \), where \(x \) and \(y=D(x,t) \) are in meters and \(t \) is in seconds.

1. [3 points] What is the amplitude of this wave?
 A. 0.03 m
 B. 0.06 m
 C. 3.4 m
 D. 6.8 m
 E. 6.8 m

2. [3 points] What is the wavelength of this wave?
 A. 0.29 m
 B. 0.92 m
 C. 1.9 m
 D. 105 m
 E. 209 m

3. [3 points] What is the speed with which this wave travels?
 A. 0.32 m/s
 B. 1.0 m/s
 C. 2.0 m/s
 D. 113 m/s
 E. 227 m/s

4. [3 points] In what direction is this wave propagating?
 A. \(+x\)
 B. \(-x\)
 C. \(+y\)
 D. \(-y\)
 E. None of the above

5. [3 points] What is the frequency (NOT the angular frequency) of this wave?
 A. 0.00475 Hz
 B. 0.0095 Hz
 C. 0.54 Hz
 D. 1.1 Hz
 E. 6.8 Hz
6. [3 points] Consider the piece of rope located at x = 2 m. What is the velocity \(v \) of this piece of rope at the time \(t = 3 \) s in the \(x \) direction?

 A. \(-0.18\) m/s
 B. \(-0.03\) m/s
 C. \(0.0\) m/s
 D. \(0.015\) m/s
 E. \(0.20\) m/s

7. [4 points] And in the \(y \) direction?

 A. \(-0.18\) m/s
 B. \(-0.03\) m/s
 C. \(0.0\) m/s
 D. \(0.015\) m/s
 E. \(0.20\) m/s

8. [4 points] Consider the piece of rope located at x = 2 m. What is the acceleration of this piece of rope at the time \(t = 3 \) s?

 A. \(-0.71\) m/s\(^2\)
 B. \(-0.18\) m/s\(^2\)
 C. \(0.0\) m/s\(^2\)
 D. \(0.016\) m/s\(^2\)
 E. \(0.71\) m/s\(^2\)

9. [3 points] If the tension in the rope were increased by a factor of 3, how would the wave speed change?

 A. The wave speed would increase by a factor of 3.
 B. The wave speed would decrease by a factor of 3.
 C. The wave speed would increase by a factor of \(\sqrt{3} \)
 D. The wave speed would decrease by a factor of \(\sqrt{3} \)
 E. The wave speed would not change.
Part II. [21 points] Consider a guitar string, 50 cm long. Its left most end is at $x=0\ m$.

10. [3 points] What is the wavelength of the first excited mode (natural mode)?
 A. 25 cm
 B. 50 cm
 C. 100 cm
 D. 125 cm
 E. 150 m

11. [3 points] What is the wavelength of the second excited mode?
 A. 25 cm
 B. 50 cm
 C. 100 cm
 D. 125 cm
 E. 150 m

The string is under 75 N of tension, and has a mass per unit length of 20 g/m.

12. [4 points] What is the natural frequency, f_1?
 A. 1.94 Hz
 B. 3.87 Hz
 C. 40.8 Hz
 D. 61.2 Hz
 E. 122 Hz

13. [3 points] What is the second natural frequency, f_2?
 A. 1.94 Hz
 B. 3.87 Hz
 C. 40.8 Hz
 D. 61.2 Hz
 E. 122 Hz

14. [4 points] Which of the following is the most accurate mathematical description of the guitar string’s oscillation in the second excited mode (assume D_M, k, and ω are set to the correct values)?
 A. $D(x,t) = D_M \sin(kx + \omega t)$
 B. $D(x,t) = D_M \sin(kx - \omega t)$
 C. $D(x,t) = D_M \cos(kx - \omega t)$
 D. $D(x,t) = D_M \sin(kx)\cos(\omega t)$
 E. $D(x,t) = D_M \cos(kx)\sin(\omega t)$
Two guitar strings are placed next to each other. The first one resonates at 2010 Hz, and the second one at 2020 Hz.

15. [3 points] What is the beat frequency?
 A. 5 Hz
 B. 10 Hz
 C. 2010 Hz
 D. 2015 Hz
 E. 4030 Hz

16. [3 points] The frequency that best represents the tone you would hear?
 A. 5 Hz
 B. 10 Hz
 C. 2010 Hz
 D. 2015 Hz
 E. 4030 Hz

17. [4 points] Consider an open tube 100 cm long. Pick the picture that best represents the displacement of the air particles in a tube oscillating in its second harmonic mode.

 A)
 B)
 C)
 D)
 E)

Physics 123A, Spring 2002
Part III. [25 points] The two speakers emit a sound with pitch f (units Hz). The two speakers are in phase. The speakers are placed at $+d$ and $-d$. The speed of sound is v.

18. [5 points] Closest point to $x=0$, on the x-axis, that you can stand and get constructive interference? Destructive interference? Express your answers in terms of the quantities given.

19. [10 points] The sound level at $x=0$ is measured to be 10 db due to the two speakers. At a nearby point, $x=x_m$, the sound level due to the two speakers is measured to be 0 db. Calculate the ratio of amplitudes of the interfering sound wave at $x=0$ and the point x_m, D_0/D_{x_m}.

20. [10 points] Determine an expression for x_m in terms of the quantities given.