An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.

Math you need to know
- Summations (Sec. 1.3.1)
- Logarithms and Exponents (Sec. 1.3.2)
 - properties of logarithms:
 - \(\log_b(xy) = \log_b x + \log_b y \)
 - \(\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y \)
 - \(\log_b x^n = n \log_b x \)
 - \(\log_a x / \log_a y = \log_b x / \log_b y \)
 - properties of exponentials:
 - \(a^{x+y} = a^x a^y \)
 - \(a^{xy} = (a^x)^y \)
 - \(a^{x/y} = a^{x-y} \)
 - \(a^{x} = (a^y)^{x/y} \)
- Proof techniques (Sec. 1.3.3)
- Basic probability (Sec. 1.3.4)

Proofs are
- a sequence of statements
 - Each statement is true, based on
 - Definitions
 - Hypotheses
 - Well-known math principles
 - Previous statements
 - Statements lead towards conclusion
Induction proof

- Method of proving statements for (infinitely) large values of n, (n is the induction variable).
- Math way of using a loop in a proof.

Example induction proof

- Prove: for all int x, for all int y, for all int n,
 If n is positive, then \(x^n - y^n \) is divisible by \(x-y \).
- Let \(S_n \) denote "for all x and y, \(x^n - y^n \) is divisible by \(x-y \)."

Proof with induction:
- Base case: show \(S_1 \)
- Inductive Hypothesis (IH): for all \(k \geq 1 \), if \(S_k \) is true, then \(S_{k+1} \) is true.
 OR
 Inductive Hypothesis (IH): for all \(k \geq 2 \), if \(S_{k-1} \) is true, then \(S_k \) is true.
Example induction proof

* Prove: for all int \(x \), for all int \(y \), for all int \(n \),

 \(n \) is positive, then \(x^n - y^n \) is divisible by \(x-y \).

* Let \(S_n \) denote "for all \(x \) and \(y \), \(x^n - y^n \) is divisible by \(x-y \)

* Proof with induction:

Pseudocode (§1.1)

* Mixture of English, math expressions, and computer code
* Less detailed than a program
* Preferred notation for describing algorithms
* Hides program design issues
* Can write at different levels of detail.

Very High-level pseudocode:

\begin{algorithm}
\textbf{Algorithm} \textit{arrayMax(A, n)}
\begin{algorithmic}
\STATE \textbf{Input} array \(A \) of \(n \) integers
\STATE \textbf{Output} maximum element of \(A \)
\STATE \texttt{currentMax} ← \(A[0] \)
\FOR {\(i \) \(\leftarrow 1 \) \text{ to } \(n - 1 \)}
\STATE \textbf{if} \(A[i] > \texttt{currentMax} \) \textbf{then}
\STATE \texttt{currentMax} ← \(A[i] \)
\ENDFOR
\STATE \textbf{return} \texttt{currentMax}
\end{algorithmic}
\end{algorithm}

Detailed pseudocode

\begin{algorithm}
\textbf{Algorithm} \textit{arrayMax(A, n)}
\begin{algorithmic}
\STATE \textbf{Input} array \(A \) of \(n \) integers
\STATE \textbf{Output} maximum element of \(A \)
\STATE \texttt{currentMax} ← \(A[0] \)
\FOR {\(i \) \(\leftarrow 1 \) \text{ to } \(n - 1 \)}
\STATE \textbf{if} \(A[i] > \texttt{currentMax} \) \textbf{then}
\STATE \texttt{currentMax} ← \(A[i] \)
\ENDFOR
\STATE \textbf{return} \texttt{currentMax}
\end{algorithmic}
\end{algorithm}
Pseudocode Details

- Control flow
 - `if` ... then ... [else ...]
 - `while` ... do ...
 - `repeat` ... until ...
 - `for` ... do ...
 - Indentation replaces braces
- Method declaration
 - `Algorithm method (arg1, arg2) {
 Input ...
 Output ...
 }

Method call

```
var.method (arg1, arg2)
```

Return value

```
return expression
```

Expressions

- Assignment (like `=` in Java)
- Equality testing (like `==` in Java)
- Superscripts and other mathematical formatting allowed

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language

Examples:

- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Estimating performance

- Count Primitive Operations
- \(= \) time needed by RAM model

Random Access Machine (RAM) Model has:

- A CPU
- An potentially unbounded bank of memory cells
- Each cell can hold an arbitrary number or character
- Memory cells are numbered
- Accessing any cell takes unit time
Running Time (§1.1)
- The running time grows with the input size.
- Running time varies with different input.
- Worst-case: look at input causing most operations.
- Best-case: look at input causing least number of operations.
- Average case: between best and worst-case.

Counting Primitive Operations (§1.1)
- Worst-case primitive operations count, as a function of the input size.

Algorithm \(\text{arrayMax}(A, n) \)

<table>
<thead>
<tr>
<th>currentMax (\leftarrow A[0])</th>
<th># operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(1 + n)</td>
</tr>
<tr>
<td>for (i \leftarrow 1) to (n - 1) do</td>
<td>(2(n - 1))</td>
</tr>
<tr>
<td>if (A[i] > \text{currentMax}) then</td>
<td>(2(n - 1))</td>
</tr>
<tr>
<td>{ increment counter (i) }</td>
<td>1</td>
</tr>
<tr>
<td>return currentMax</td>
<td>Total (7n - 2)</td>
</tr>
</tbody>
</table>

Counting Primitive Operations (§1.1)
- Best-case primitive operations count, as a function of the input size.

Algorithm \(\text{arrayMax}(A, n) \)

<table>
<thead>
<tr>
<th>currentMax (\leftarrow A[0])</th>
<th># operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(1 + n)</td>
</tr>
<tr>
<td>for (i \leftarrow 1) to (n - 1) do</td>
<td>(2(n - 1))</td>
</tr>
<tr>
<td>if (A[i] > \text{currentMax}) then</td>
<td>(2(n - 1))</td>
</tr>
<tr>
<td>{ increment counter (i) }</td>
<td>0</td>
</tr>
<tr>
<td>return currentMax</td>
<td>Total (5n)</td>
</tr>
</tbody>
</table>
Defining Worst \([W(n)]\), Best \([B(N)]\), and Average \([A(n)]\)

- Let \(I_n\) = set of all inputs of size \(n\).
- Let \(t(i)\) = # of primitive ops by alg on input \(i\).
- \(W(n)\) = maximum \(t(i)\) taken over all \(i\) in \(I_n\)
- \(B(n)\) = minimum \(t(i)\) taken over all \(i\) in \(I_n\)
- \(A(n) = \sum_{i \in I_n} p(i) t(i)\), \(p(i)\) = prob. of \(i\) occurring.

We focus on the worst case
- Easier to analyze
- Usually want to know how bad can algorithm be
- average-case requires knowing probability; often difficult to determine

Experimental Studies (§ 1.6)

- Implement your algorithm
- Run your implementation with inputs of varying size and composition
- Measure running time of your implementation (e.g., with `System.currentTimeMillis()`)
- Plot the results

Limitations of Experiments

- Implement may be time-consuming and/or difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used
- Infeasible to test for correctness on all possible inputs.
Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, \(n \)
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment
- Can prove correctness

Growth Rate of Running Time

- Changing the hardware/software environment
 - Affects \textit{running time} by a constant factor;
 - Does not alter its growth rate
- Example: linear growth rate of \textit{arrayMax} is an intrinsic property of the algorithm.

Growth Rates

- Growth rates of functions:
 - Linear: \(n \)
 - Quadratic: \(n^2 \)
 - Cubic: \(n^3 \)
- In a log-log chart, the slope of the line corresponds to the growth rate of the function (for polynomials)
Constant Factors

- The growth rate is not affected by:
 - constant factors
 - lower-order terms
- Examples:
 - $10^n + 10^5$ is a linear function
 - $10^5n + 10^7$ is a quadratic function

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function.
- The statement "$f(n)$ is $O(g(n))$" means that the growth rate of $f(n)$ is no more than the growth rate of $g(n)$.
- We can use the big-Oh notation to rank functions according to their growth rate.

<table>
<thead>
<tr>
<th>$g(n)$ grows more</th>
<th>$f(n)$ is $O(g(n))$</th>
<th>$g(n)$ is $O(f(n))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Same growth</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Big-Oh Notation (§1.2)

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_0 such that $f(n) \leq cg(n)$ for $n \geq n_0$.
- Example: $2n + 10$ is $O(n)$.
 - $2n + 10 \leq cn$ for $n \geq n_0$
 - $(c - 2)n + 10$
 - $n \geq 100(c - 2)$
 - Pick $c = 3$ and $n_0 = 10$.
Big-Oh Example

Example: the function \(n^2 \) is not \(O(n) \)
- \(n^2 \leq cn \)
- \(n \leq c \)
- The above inequality cannot be satisfied since \(c \) must be a constant

More Big-Oh Examples

- \(7n - 2 \)
 - \(7n - 2 \) is \(O(n) \)
 - need \(c > 0 \) and \(n_0 \) such that \(7n - 2 \leq cn \) for \(n \geq n_0 \)
 - this is true for \(c = 7 \) and \(n_0 = 1 \)
- \(3n^3 + 20n^2 + 5 \)
 - \(3n^3 + 20n^2 + 5 \) is \(O(n^3) \)
 - need \(c > 0 \) and \(n_0 \) such that \(3n^3 + 20n^2 + 5 \leq cn^3 \) for \(n \geq n_0 \)
 - this is true for \(c = 4 \) and \(n_0 = 21 \)
- \(3 \log n + \log \log n \)
 - \(3 \log n + \log \log n \) is \(O(\log n) \)
 - need \(c > 0 \) and \(n_0 \) such that \(3 \log n + \log \log n \leq cn \log n \) for \(n \geq n_0 \)
 - this is true for \(c = 4 \) and \(n_0 = 2 \)

Big-Oh Rules

- If \(f(n) \) a polynomial of degree \(d \), then \(f(n) \) is \(O(n^d) \), i.e.,
 1. Drop lower-order terms
 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "\(2n \) is \(O(n) \)" instead of "\(2n \) is \(O(n^2) \)"
- Use the simplest expression of the class
 - Say "\(3n + 5 \) is \(O(n) \)" instead of "\(3n + 5 \) is \(O(3n) \)"

TCSS343 winter 03, analysis version 1.0
Asymptotic Algorithm Analysis

- asymptotic analysis = determining an algorithms running time in big-Oh notation
- asymptotic analysis steps:
 - We find the worst-case number of primitive operations executed as a function of the input size.
 - We express this function with big-Oh notation.
- Example:
 - We determine that algorithm arrayMax executes at most 7n − 2 primitive operations.
 - We say that algorithm arrayMax "runs in O(n) time" or "runs in order n time."
- Since constant factors and lower-order terms are eventually dropped, we can disregard them when counting primitive operations!

Intuition for Asymptotic Notation

Big-Oh
- f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n).

big-Omega
- f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n).

big-Theta
- f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n).

little-oh
- f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n).

little-omega
- f(n) is ω(g(n)) if f(n) is asymptotically strictly greater than g(n).

Relatives of Big-Oh

- big-Omega
 - f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n₀ ≥ 1 such that f(n) ≥ c•g(n) for n ≥ n₀.

- big-Theta
 - f(n) is Θ(g(n)) if there are constants c' > 0 and c'' > 0 and an integer constant n₀ ≥ 1 such that c'•g(n) ≤ f(n) ≤ c''•g(n) for n ≥ n₀.

- little-oh
 - f(n) is o(g(n)) if, for any constant c > 0, there is an integer constant n₀ ≥ 0 such that f(n) ≤ c•g(n) for n ≥ n₀.

- little-omega
 - f(n) is ω(g(n)) if, for any constant c > 0, there is an integer constant n₀ ≥ 0 such that f(n) ≥ c•g(n) for n ≥ n₀.
Example Uses of the Relatives of Big-Oh

- $5n^2$ is $O(n^3)$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \leq cg(n)$ for $n \geq n_0$. Let $c = 5$ and $n_0 = 1$.

- $5n^2$ is $\Omega(n)$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \geq cg(n)$ for $n \geq n_0$. Let $c = 1$ and $n_0 = 1$.

- $5n^2$ is $\omega(n)$ if, for any constant $c > 0$, there is an integer constant $n_0 \geq 0$ such that $f(n) > cg(n)$ for $n \geq n_0$. Need $5n^2 > cn_0 \Rightarrow$ given c, the n_0 that satisfies this is $n_0 \geq c/5 \geq 0$.

More math tools & proofs

- Correctness of computing average
- Loop invariants and induction
- Recurrence equations
- Strong induction
- Cost of recursive algorithms with recurrence equations.

Computing Prefix Averages

- Asymptotic analysis examples: two algorithms for prefix averages
- The i-th prefix average of an array X is average of the first $(i + 1)$ elements of X: $A[i] = (X[0] + X[1] + \ldots + X[i])/(i + 1)$

- Computing the array A of prefix averages of another array X has applications to financial analysis.
Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition:

Algorithm `prefixAverages1(X, n)`

Input: array `X` of `n` integers
Output: array `A` of prefix averages of `X`

#operations

1. `A ← new array of `n` integers`
2. `for `i ← 0 to `n` - 1 do`
3. `s ← X[0]`
4. `for `j ← 1 to `i` do`
5. `s ← s + X[j]`
6. `A[i] ← s / (i + 1)`
7. `return A`

Arithmetic Progression

The running time of `prefixAverages1` is $O(1 + 2 + \ldots + n)$

The sum of the first `n` integers is $\frac{n(n + 1)}{2}$

- There is a simple visual proof of this fact

Thus, algorithm `prefixAverages1` runs in $O(n^2)$ time
Prefix Averages (Linear, non-recursive)

The following algorithm computes prefix averages in linear time by keeping a running sum.

Algorithm prefixAverages2(X, n)

```
Input array X of n integers
Output array A of prefix averages of X
#operations
A ← new array of n integers
s ← 0
for i ← 0 to n − 1 do
    s ← s + X[i]
    A[i] ← s / (i + 1)
return A
```

Algorithm prefixAverages2 runs in O(n) time

Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by computing prefix sums (and averages).

Algorithm recPrefixSumAndAverage(X, A, n)

```
Input array X of n ≥ 1 integer.
Empty array A; A is same size as X.
Output array A[0],...,A[n-1] changed to hold prefix averages of X.
#operations
returns sum of X[0], X[1],...,X[n-1]
if n=1
    A[0] ← X[0]
    return A[0]
else
    tot ← recPrefixSumAndAverage(X, A, n-1)
    tot ← tot + X[n-1]
    A[n-1] ← tot / n
    return tot
```

Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by computing prefix sums (and averages).

Algorithm recPrefixSumAndAverage(X, A, n)

```
Input array X of n ≥ 1 integer.
Empty array A; A is same size as X.
Output array A[0],...,A[n-1] changed to hold prefix averages of X.
#operations
returns sum of X[0], X[1],...,X[n-1]
if n=1
    A[0] ← X[0]
    return A[0]
else
    tot ← recPrefixSumAndAverage(X, A, n-1)
    tot ← tot + X[n-1]
    A[n-1] ← tot / n
    return tot
```

TCSS343 winter 03, analysis version 1.0
Prefix Averages, Linear

Recurrence equation
- $T(1) = 6$
- $T(n) = 13 + T(n-1)$ for $n > 1$.

Solution of recurrence is
- $T(n) = 13(n-1) + 6$
- $T(n)$ is $O(n)$.