The Stack ADT (§2.1.1)

- The Stack ADT stores arbitrary objects.
- Insertions and deletions follow the last-in first-out scheme.
- Think of a spring-loaded plate dispenser.
- Main stack operations:
 - push(object): inserts an element.
 - object pop(): removes and returns the last inserted element.
- Auxiliary stack operations:
 - object top(): returns the last inserted element without removing it.
 - integer size(): returns the number of elements stored.
 - boolean isEmpty(): indicates whether no elements are stored.

Applications of Stacks

- Direct applications:
 - Page-visited history in a Web browser.
 - Undo sequence in a text editor.
 - Chain of method calls in the Java Virtual Machine or C++ runtime environment.
- Indirect applications:
 - Auxiliary data structure for algorithms.
 - Component of other data structures.
Array-based Stack (§2.1.1)

- A simple way of implementing the Stack ADT uses an array
- We add elements from left to right
- A variable t keeps track of the index of the top element (size is t+1)

Algorithm `pop()`:

```
if !isEmpty() then
    throw EmptyStackException
else
    t ← t - 1
    return S[t + 1]
```

Algorithm `push(o)`:

```
if t = S.length - 1 then
    throw FullStackException
else
    t ← t + 1
    S[t] ← o
```

The Queue ADT (§2.1.2)

- The Queue ADT stores arbitrary objects
- Insertions and deletions follow the first-in first-out scheme
- Insertions are at the rear of the queue and removals are at the front of the queue
- Main queue operations:
 - `enqueue(object)`: inserts an element at the end of the queue
 - `dequeue()`: removes and returns the element at the front of the queue
- Auxiliary queue operations:
 - `object front()`: returns the element at the front without removing it
 - `integer size()`: returns the number of elements stored
 - `boolean isEmpty()`: indicates whether no elements are stored
- Exceptions
 - Attempting the execution of `dequeue` or `front` on an empty queue throws an `EmptyQueueException`

Applications of Queues

- Direct applications
 - Waiting lines
 - Access to shared resources (e.g., printer)
 - Multiprogramming
- Indirect applications
 - Auxiliary data structure for algorithms
 - Component of other data structures
Singly Linked List

- A singly linked list is a concrete data structure consisting of a sequence of nodes.
- Each node stores:
 - an element
 - a link to the next node

Queue with a Singly Linked List

- We can implement a queue with a singly linked list:
 - The front element is stored at the first node.
 - The rear element is stored at the last node.
- The space used is $O(n)$ and each operation of the Queue ADT takes $O(1)$ time.

The Vector ADT

- The Vector ADT extends the notion of array by storing a sequence of arbitrary objects.
- An element can be accessed, inserted or removed by specifying its rank (number of elements preceding it).
- An exception is thrown if an incorrect rank is specified (e.g., a negative rank).
- Main vector operations:
 - object elementAtRank(integer r): returns the element at rank r without removing it.
 - object replaceAtRank(integer r, object o): replace the element at rank with o and return the old element.
 - insertAtRank(integer r, object o): insert a new element o to have rank r.
 - object removeAtRank(integer r): removes and returns the element at rank r.
- Additional operations size() and isEmpty().
Applications of Vectors

- **Direct applications**
 - Sorted collection of objects (elementary database)

- **Indirect applications**
 - Auxiliary data structure for algorithms
 - Component of other data structures

Array-based Vector

- Use an array V of size N
- A variable n keeps track of the size of the vector (number of elements stored)
- Operation $\text{elemAtRank}(r)$ is implemented in $O(1)$ time by returning $V[r]$

![Array-based Vector Diagram]

Insertion

- In operation $\text{insertAtRank}(r, o)$, we need to make room for the new element by shifting forward the $n - r$ elements $V[r], \ldots, V[n - 1]$
- In the worst case ($r = 0$), this takes $O(n)$ time

![Insertion Diagram]
Deletion

- In operation `removeAtRank(r)`, we need to fill the hole left by the removed element by shifting backward the \(n - r - 1 \) elements \(V[r+1], \ldots, V[n-1] \).
- In the worst case (\(r = 0 \)), this takes \(O(n) \) time.

```
  V[0] 2 3 | 4 | 5
  V[0] 2 3 | 4 |
  V[0] 2 3 4 |
```

Performance

- In the array based implementation of a Vector:
 - The space used by the data structure is \(O(N) \).
 - `size`, `isEmpty`, `elemAtRank` and `replaceAtRank` run in \(O(1) \) time.
 - `insertAtRank` and `removeAtRank` run in \(O(n) \) time.
- If we use the array in a circular fashion, `insertAtRank(0)` and `removeAtRank(0)` run in \(O(1) \) time.
- In an `insertAtRank` operation, when the array is full, instead of throwing an exception, we can replace the array with a larger one.

Position ADT

- The `Position` ADT models the notion of place within a data structure where a single object is stored.
- It gives a unified view of diverse ways of storing data, such as:
 - a cell of an array
 - a node of a linked list
- Just one method:
 - `object element()`: returns the element stored at the position.
List ADT (§2.2.2)

- The List ADT models a sequence of positions storing arbitrary objects.
- It establishes a before/after relation between positions.
- Generic methods:
 - `size()`, `isEmpty()`.
- Query methods:
 - `isFirst(p)`, `isLast(p)`.

Accessor methods:
- `first()`, `last()`.
- `before(p)`, `after(p)`.

Update methods:
- `replaceElement(p, o)`.
- `swapElements(p, q)`.
- `insertBefore(p, o)`.
- `insertAfter(p, o)`.
- `insertFirst(o)`.
- `insertLast(o)`.
- `remove(p)`.

Doubly Linked List

- A doubly linked list provides a natural implementation of the List ADT.
- Nodes implement Position and store:
 - `element`.
 - `link to the previous node`.
 - `link to the next node`.

Special trailer and header nodes.

Insertion

- We visualize operation `insertAfter(p, X)`, which returns position `q`.
Deletion

We visualize remove(p), where p = last()

Performance

In the implementation of the List ADT by means of a doubly linked list
- The space used by a list with n elements is O(n)
- The space used by each position of the list is O(1)
- All the operations of the List ADT run in O(1) time
- Operation element() of the Position ADT runs in O(1) time

Sequence ADT

The Sequence ADT is the union of the Vector and List ADTs

Elements accessed by
- Rank, or
- Position

Generic methods:
- size(), isEmpty()

Vector-based methods:
- elemAtRank(r), replaceAtRank(r, o), insertAtRank(r, o), removeAtRank(r)

List-based methods:
- first(), last(), before(p), after(p), replaceElement(p, o), swapElements(p, q), insertBefore(p, o), insertAfter(p, o), insertFirst(o), insertLast(o), remove(o)

Bridge methods:
- atRank(r), rankOf(p)
Applications of Sequences

- The Sequence ADT is a basic, general-purpose, data structure for storing an ordered collection of elements
- Direct applications:
 - Generic replacement for stack, queue, vector, or list
 - Small database (e.g., address book)
- Indirect applications:
 - Building block of more complex data structures

Array-based Implementation

- We use a circular array storing positions
- A position object stores:
 - Element
 - Rank
- Indices f and l keep track of first and last positions

Sequence Implementations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Array</th>
<th>List</th>
</tr>
</thead>
<tbody>
<tr>
<td>size, isEmpty</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>atRank, rankOf, elemAtRank</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>first, last, before, after</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>replaceElement, swapElements</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>replaceAtRank</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>insertAtRank, removeAtRank</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>insertFirst, insertLast</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>insertAfter, insertBefore</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>remove</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>
Iterators

- An iterator abstracts the process of scanning through a collection of elements.
- Methods of the ObjectIterator ADT:
 - `object object()`
 - `boolean hasNext()`
 - `object nextObject()`
 - `reset()`
- Extends the concept of Position by adding a traversal capability.
- Implementation with an array or singly linked list.

- An iterator is typically associated with another data structure.
- We can augment the Stack, Queue, Vector, List, and Sequence ADTs with method:
 - `ObjectIterator elements()`
- Two notions of iterator:
 - `snapshot`: freezes the contents of the data structure at a given time.
 - `dynamic`: follows changes to the data structure.

Trees (§2.3)

- In computer science, a tree is an abstract model of a hierarchical structure.
- A tree consists of nodes with a parent-child relation.
- Applications:
 - Organization charts
 - File systems
 - Programming environments

Linked Data Structure for Representing Trees (§2.3.4)

- A node is represented by an object storing:
 - `Element`
 - `Parent node`
 - `Sequence of children nodes`
- Node objects implement the Position ADT.
Tree ADT (§2.3.1)

- We use positions to abstract nodes
- Generic methods:
 - integer size()
 - boolean isLeaf()
 - objectIterator elements()
 - positionIterator positions()
- Accessor methods:
 - position root()
 - position parent(p)
 - positionIterator children(p)
- Query methods:
 - boolean isInternal(p)
 - boolean isExternal(p)
 - boolean isRoot(p)
- Update methods:
 - swapElements(p, q)
 - object replaceElement(p, o)
- Additional update methods may be defined by data structures implementing the Tree ADT

Preorder Traversal (§2.3.2)

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

Algorithm \textit{preOrder}(v)

\begin{itemize}
 \item \textit{visit}(v)
 \item for each child \(w\) of \(v\) \textit{preOrder}(w)
\end{itemize}

Postorder Traversal (§2.3.2)

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Algorithm \textit{postOrder}(v)

\begin{itemize}
 \item \textit{visit}(v)
 \item for each child \(w\) of \(v\) \textit{postOrder}(w)
\end{itemize}
Binary Trees (§2.3.3)

- A binary tree is a tree where:
 - Each internal node has at most two children.
- A proper binary tree is a binary tree where:
 - Each internal node has exactly two children.
 - The children are an ordered pair, denoted left child and right child.
- Applications:
 - Arithmetic expressions
 - Decision processes
 - Searching

Alternative recursive definition: a (proper) binary tree is either:
- A tree consisting of a single node, or
- A tree whose root has an ordered pair of children, each of which is a (proper) binary tree.

Applications:
- Arithmetic expressions
- Decision processes
- Searching

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - Internal nodes: operators
 - External nodes: operands
- Example: arithmetic expression tree for the expression \((2 \times (a - 1)) + (3 \times b))\)

Decision Tree

- Binary tree associated with a decision process
 - Internal nodes: questions with yes/no answer
 - External nodes: decisions
- Example: dining decision

Want a fast meal?
 - Yes
 - No

How about coffee?
 - Yes
 - No

On expense account?
 - Yes
 - No

Starbucks

In 'N Out

Antoine's

Denny's
Properties of (Proper) Binary Trees

- Notation:
 - n: number of nodes
 - e: number of external nodes
 - i: number of internal nodes
 - h: height

- Properties:
 - $e = i + 1$
 - $n = 2e - 1$
 - $h \leq i$
 - $h \leq (n - 1)/2$
 - $e \leq 2^h$
 - $h \geq \log_2 e$
 - $h \geq \log_2 (n + 1) - 1$

Inorder Traversal

- In an inorder traversal a node is visited after its left subtree and before its right subtree.
- Application: draw a binary tree.
- Algorithm `inOrder(v)`
  ```
  if isInternal(v)
      visit(v)
      inOrder(leftChild(v))
      inOrder(rightChild(v))
  ```

Euler Tour Traversal

- Generic traversal of a binary tree.
- Includes a special cases the preorder, postorder and inorder traversals.
- Walk around the tree and visit each node three times:
 - on the left (preorder)
 - from below (inorder)
 - on the right (postorder)
Printing Arithmetic Expressions

- Specialization of an inorder traversal
 - print operand or operator when visiting node
 - print "(" before traversing left subtree
 - print ")" after traversing right subtree

Algorithm `printExpr(v)`

```java
if isInternal(v)
    print("(")
    printExpr(leftChild(v))
    print(v.element())
    if isInternal(v)
        printExpr(rightChild(v))
    print(")")
```

$(2 \times (a - 1)) + (3 \times b)$

Linked Data Structure for Binary Trees (§2.3.4)

- A node is represented by an object storing
 - Element
 - Parent node
 - Left child node
 - Right child node
- Node objects implement the Position ADT

Array-Based Representation of Binary Trees

- Nodes are stored in an array

```
let rank(node) be defined as follows:
rank(root) = 1
if node is the left child of parent(node),
    rank(node) = 2 \times rank(parent(node))
if node is the right child of parent(node),
    rank(node) = 2 \times rank(parent(node)) + 1
```