The Greedy Method

Outline and Reading

- The Greedy Method Technique (§5.1)
- Fractional Knapsack Problem (§5.1.1)
- Task Scheduling (§5.1.2)
- Minimum Spanning Trees (§7.3) [future lecture]

The Greedy Method

Technique

The greedy method is a general algorithm design paradigm, built on the following elements:

- configurations: different choices, collections, or values to find
- objective function: a score assigned to configurations, which we want to either maximize or minimize

It works best when applied to problems with the greedy-choice property:

- a globally-optimal solution can always be found by a series of local improvements from a starting configuration.
Making Change

- **Problem**: A dollar amount to reach and a collection of coin amounts to use to get there.
- **Configuration**: A dollar amount yet to return to a customer plus the coins already returned
- **Objective function**: Minimize number of coins returned.
- **Greedy solution**: Always return the largest coin you can

Example 1: Coins are valued $.32, $.08, $.01
- Has the greedy-choice property, since no amount over $.32 can be made with a minimum number of coins by omitting a $.32 coin (similarly for amounts over $.08, but under $.32).

Example 2: Coins are valued $.30, $.20, $.05, $.01
- Does not have greedy-choice property, since $.40 is best made with two $.20’s, but the greedy solution will pick three coins (which ones?)

The Greedy Method v 1.1 4

The Fractional Knapsack Problem

- **Given**: A set S of n items, with each item i having
 - b_i - a positive benefit
 - w_i - a positive weight
- **Goal**: Choose items with maximum total benefit but with weight at most W.
- If we are allowed to take fractional amounts, then this is the **fractional knapsack problem**.
 - In this case, we let x_i denote the amount we take of item i
 - **Objective**: maximize $\sum_{i \in S} b_i (x_i / w_i)$
 - **Constraint**: $\sum_{i \in S} x_i \leq W$

Example

- **Given**: A set S of n items, with each item i having
 - b_i - a positive benefit
 - w_i - a positive weight
- **Goal**: Choose items with maximum total benefit but with weight at most W.

<table>
<thead>
<tr>
<th>Items</th>
<th>Value ($ per ml)</th>
<th>Weight</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4 ml</td>
<td>$12</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8 ml</td>
<td>$32</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>2 ml</td>
<td>$40</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>6 ml</td>
<td>$30</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1 ml</td>
<td>$50</td>
</tr>
<tr>
<td></td>
<td>(10 ml)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Solution**:
 - 1 ml of 5
 - 2 ml of 3
 - 6 ml of 4
 - 1 ml of 2

"knapsack"
The Fractional Knapsack Algorithm

- **Greedy choice:** Keep taking item with highest value (benefit to weight ratio)
 - Since $\sum \frac{b_i}{w_i} = \sum \frac{b_i + \alpha w_i}{w_i}$, why?
- **Correctness:** Suppose there is a better solution
 - there is an item i with higher value than a chosen item j, but $x_i < w_i$, $x_j > 0$ and $v_i < v_j$
 - If we substitute some i with j, we get a better solution
 - How much of i: $\min(w_i - x_i, x_j)$
 - Thus, there is no better solution than the greedy one

Algorithm `fractionalKnapsack(S, W)`

- **Input:** set S of items with benefit b_i and weight w_i, max. weight W
- **Output:** amount x_i of each item i to maximize benefit b_i / weight at most W

 for each item i in S

 $x_i \leftarrow 0$

 $v_i \leftarrow b_i / w_i$ [value]

 $w_i \leftarrow 0$ [total weight]

 while $w < W$

 remove item i w/ highest v_i

 $x_i \leftarrow \min[w_i, W - w]$

 $w \leftarrow w + x_i$ [amount of item i to take]

Task Scheduling

- **Given:** a set T of n tasks, each having:
 - A start time, s_i
 - A finish time, f_i (where $s_i < f_i$)
- **Goal:** Perform all the tasks using a minimum number of "machines."
Task Scheduling Algorithm

- **Greedy choice:** consider tasks by their start time and use as few machines as possible with this order.
- **Correctness:**
 - When kth machine is created to do task i (at time s_i), all $k-1$ other machines are busy with another task at time s_j.
 - There are k tasks that conflict with each other at time s_i.
 - At least k machines necessary.
- Is it correct w/o ordering by start-time?

Algorithm taskSchedule(T)

```java
Input: set $T$ of tasks w/ start time $s_i$ and finish time $f_i$
Output: non-conflicting schedule with minimum number of machines

$m ← 0$ {no. of machines}
while $T$ is not empty
    remove task with smallest $s_i$
    if there’s a machine for $i$
        schedule $i$ on machine $j$
    else
        $m ← m + 1$
        schedule $i$ on machine $m$

return schedule;
```

Example

- **Given:** a set T of n tasks, each having:
 - A start time, s_i (where $s < f$)
 - $[1, 4], [1, 3], [2, 5], [3, 7], [4, 7], [6, 9], [7, 8]$ (ordered by start)
- **Goal:** Perform all tasks on min. number of machines

Task Scheduling Algorithm

- **Greedy choice:** consider tasks by their start time and use as few machines as possible with this order.
- Make following operations fast:
 - removing task with smallest start time
 - checking scheduling conflicts
- Both steps above can be done in $O(\log n)$ time, where n is number of tasks. (How?)
- Thus, $O(n \log n)$.

Algorithm taskSchedule(T)

```java
Input: set $T$ of tasks w/ start time $s_i$ and finish time $f_i$
Output: non-conflicting schedule with minimum number of machines

$m ← 0$ {no. of machines}
while $T$ is not empty
    remove task with smallest $s_i$
    if there’s a machine for $i$
        schedule $i$ on machine $j$
    else
        $m ← m + 1$
        schedule $i$ on machine $m$

return schedule;
```