Minimum Spanning Trees

Outline and Reading

- Minimum Spanning Trees (§7.3)
 - Definitions
 - A crucial fact
- The Prim-Jarnik Algorithm (§7.3.2)
- Kruskal's Algorithm (§7.3.1)
- Baruvka's Algorithm (§7.3.3)

Minimum Spanning Trees

Spanning subgraph
- Subgraph of a graph \(G \) containing all the vertices of \(G \)

Spanning tree
- Spanning subgraph that is itself a (free) tree

Minimum spanning tree (MST)
- Spanning tree of a weighted graph with minimum total edge weight

Applications
- Communications networks
- Transportation networks
Prim-Jarnik’s Algorithm
- Like Dijkstra’s algorithm only simpler
- Grow the MST from arbitrary vertex \(s \)
- Greedily add vertices into cloud based on distance to any vertex in cloud
- At \(v \), need to store \(d(v) \) = minimum weight edge connecting \(v \) to a cloud vertex
- At each step:
 - We add to the cloud the vertex \(u \) outside the cloud with the smallest distance label
 - We update the labels of the vertices adjacent to \(u \) (edge relaxation)

Prim’s Edge Relaxation
- Consider an edge \(e = (u,v) \) such that
 - \(u \) is the vertex most recently added to the cloud
 - \(v \) is not in the cloud
- The relaxation of edge \(e \) updates distance \(d(v) \) as follows:
 \[d(v) \leftarrow \min\{d(v), e\} \]

Prim’s Example
Example (contd.)

Cycle Property

Cycle Property:
- Let T be a minimum spanning tree of a weighted graph G.
- Let e be an edge of G that is not in T and C let be the cycle formed by e with T.
- For every edge f of C, \(\text{weight}(f) \leq \text{weight}(e) \).

Proof:
- By contradiction
- If \(\text{weight}(f) > \text{weight}(e) \) we can get a spanning tree of smaller weight by replacing e with f.

Correctness of Prim’s

Let T_k be tree produced by Prim’s after kth iteration. Let G_k be the subgraph of G induced by T_k. Then T_k is an MST of G_k.
Prim-Jarnik’s Algorithm (cont.)

A priority queue stores
the vertices outside the
cloud
- Key: distance
- Element: vertex
Locator-based methods
- insert(k, e) returns a
 locator
- replaceKey(k) changes
 the key of an item
We store three labels
with each vertex:
- Distance
- Tree edge in MST
- Locator in priority queue

Algorithm PrimJarnikMST(G)
Q ← new heap-based priority queue
s ← a vertex of G
for all v ∈ G.vertices
 if v = s
 setDistance(v, 0)
 else
 setDistance(v, ∞)
setTreeEdge(v, ∅)
l ← Q.insert(getDistance(v), v)
setLocator(v, l)
while ¬Q.isEmpty
u ← Q.removeMin
for all e ∈ G.incidentEdges(u)
z ← G.opposite(u, e)
r ← weight(e)
if r < getDistance(z)
 setDistance(z, r)
 setTreeEdge(z, e)
 Q.replaceKey(getLocator(z), r)

Example graph
Start at 1, run Prim’s

Analysis
Graph operations
- Method incidentEdges is called once for each vertex
Label operations
- We set/get the distance, tree and locator labels of vertex e O(deg(z))
times
- Setting/getting a label takes O(1) time
Priority queue operations
- Each vertex inserted and removed once taking O(deg(u)) time each time
- The key of a vertex w in the priority queue is modified at most O(deg(w))
times, where each key change takes O(deg(w)) time
- Prim-Jarnik’s algorithm runs in O(m + w log a) time provided the
 graph is represented by the adjacency list structure
- The running time is O(m log a) since the graph is connected
- What is running time for unsorted-sequence based priority queue?
Kruskal’s MST algorithm

- Another greedy strategy for finding MST
- Gradually turn forest into tree as edges are added
- Add cheapest edge possible
 - Don’t add edge if it forms cycle
- Overview:
 - kruskalMST (Graph G)
 - Initialize F (forest) to empty.
 - Place all edges in PQ according to cost
 - For each edge (u,v) in PQ (in sorted order)
 - If (u,v) does not make a cycle in F
 - add (u,v) to F
 - return F;

Partition Property

Partition Property:
- Consider a partition of the vertices of G into subsets U and V
- Let e be an edge of minimum weight across the partition
- There is a minimum spanning tree of G containing edge e

Proof:
- Let T be an MST of G
- If T does not contain e, consider the cycle C formed by e with T and let f be an edge of C across the partition
- By the cycle property, weight(f) ≤ weight(e)
- Thus, weight(f) = weight(e)
- We obtain another MST by replacing f with e

Replacing f with e yields another MST

Kruskal’s Algorithm

- Each vertex starts in its own cloud (a partition)
- Clouds merge together as edges are added
- A priority queue stores edges in weight order
 - Key: weight
 - Element: edge
- Only edges between clouds will not form cycles
 - add cheapest edge between clouds
- At end of algorithm:
 - All vertices in one cloud
 - Edges added form MST

Algorithm: KruskalMST(G)
for each vertex v in G do
 define a Cloud(v) of {v}
let Q be a priority queue.
Insert all edges into Q using their weights as the key
F, T := ∅
while T has fewer than n-1 edges do
 edge e = Q.removeMin()
 Let u, v be the endpoints of e
 if Cloud(v) ≠ Cloud(u) then
 Add edge e to T
 Merge Cloud(u) and Cloud(v)
return T
Example

Data Structure for Kruskal Algorithm

- The algorithm maintains a forest of trees
- An edge is accepted if it connects distinct trees
- We need a data structure that maintains a partition, i.e., a collection of disjoint sets, with the operations:
 - \texttt{find}(u): return the set storing u
 - \texttt{union}(u,v): replace the sets storing u and v with their union
Minimum Spanning Trees

Representation of a Partition

- Each set is stored in a sequence.
- Each element has a reference back to the set.
 - Operation `find(u)` takes O(1) time, and returns the set of which u is a member.
 - In operation `union(u,v)`, we move the elements of the smaller set to the sequence of the larger set and update their references.
 - The time for operation `union(u,v)` is `min(n_u,n_v)`, where `n_u` and `n_v` are the sizes of the sets storing u and v.
- Whenever an element is processed, it goes into a set of size at least double, hence each element is processed at most `log n` times.

Partition-Based Implementation

A partition-based version of Kruskal's Algorithm performs cloud merges as unions and tests as finds.

Algorithm Kruskal(G)

Input: A weighted graph G.

Output: An MST T for G.

Let P be a partition of the vertices of G, where each vertex forms a separate set.
Let Q be a priority queue storing the edges of G, sorted by their weights.
Let T be an initially-empty tree.

while Q is not empty do
 \((u, v) \leftarrow Q.removeMinElement()\)
 if \(P.find(u) \neq P.find(v)\) then
 Add \((u, v)\) to T
 \(P.union(u, v)\)

return T

Running time: \(O(m \log n)\)

Baruvka's Algorithm

Like Kruskal's Algorithm, Baruvka's algorithm grows many "clouds" at once.

Algorithm BaruvkaMST(G)

Input: A weighted graph G.

Output: An MST T for G.

Let \(C\) be a partition of the vertices of G.
Let T be an initially-empty tree.

while T has fewer than \(n - 1\) edges do
 for each connected component C in T do
 Let edge e be the smallest-weight edge from C to another component in T.
 if e is not already in T then
 Add edge e to T
 \(P.union(u, v)\)

return T

Each iteration of the while-loop halves the number of connected components in T.
- The running time is \(O(m \log n)\).