Quick-Sort

Quick-Sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
- Divide: pick a random element \(x \) (called pivot) and partition \(S \) into
 - \(L \) elements less than \(x \)
 - \(E \) elements equal to \(x \)
 - \(G \) elements greater than \(x \)
- Recur: sort \(L \) and \(G \)
- Conquer: join \(L \), \(E \) and \(G \)

Outline and Reading

- Quick-sort (§4.3)
 - Algorithm
 - Partition step
 - Quick-sort tree
 - Execution example
- Analysis of quick-sort (4.3.1)

Execution Example

Pivot selection

7 2 9 4 3 7 8 1

Quick-Sort Tree

An execution of quick-sort is depicted by a binary tree
- Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1

Partition

We partition an input sequence as follows:
- We remove, in turn, each element \(y \) from \(S \) and
- We insert \(y \) into \(L \), \(E \) or \(G \), depending on the result of the comparison with the pivot \(x \)
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes \(O(1) \) time
- Thus, the partition step of quick-sort takes \(O(n) \) time

Algorithm \(\text{partition}(S, p) \)

Input sequence \(S \), position \(p \) of pivot
Output subsequences \(L \), \(E \), \(G \) of the elements of \(S \) less than, equal to, or greater than the pivot, resp.

1. \(L \), \(E \), \(G \leftarrow \) empty sequences
2. \(x \leftarrow S \).remove\((p) \)
3. while \(\neg S \).isEmpty
 4. \(y \leftarrow S \).remove\(S \).first\(() \)
5. if \(y < x \)
 6. \(L \).insertLast\((y) \)
else if \(y = x \)
 7. \(E \).insertLast\((y) \)
else \(y > x \)
 8. \(G \).insertLast\((y) \)
9. return \(L \), \(E \), \(G \)
Execution Example (cont.)

Partition, recursive call, pivot selection

2

4 3 1

\[7 2 9 4 3 7 \rightarrow 1 \]

\[2 4 3 1 \]

\[1 \rightarrow 1 \]

\[1 \rightarrow 0 \]

\[1 \rightarrow 1 \]

\[4 2 \rightarrow 2 1 \]

Execution Example (cont.)

Partition, recursive call, base case

2

4 3 1

\[7 2 9 4 3 7 \rightarrow 1 \]

\[2 4 3 1 \]

\[1 \rightarrow 1 \]

\[1 \rightarrow 0 \]

\[4 2 \rightarrow 2 1 \]

Execution Example (cont.)

Recursive call, ..., base case, join

2

4 3 1

\[7 2 9 4 3 7 \rightarrow 1 \]

\[2 4 3 1 \]

\[1 \rightarrow 1 \]

\[1 \rightarrow 0 \]

\[4 2 \rightarrow 2 1 \]

Execution Example (cont.)

Recursive call, pivot selection

2

4 3 1

\[7 2 9 4 3 7 \rightarrow 1 \]

\[2 4 3 1 \]

\[1 \rightarrow 1 \]

\[1 \rightarrow 0 \]

\[4 2 \rightarrow 2 1 \]

Execution Example (cont.)

Partition, ... recursive call, base case

2

4 3 1

\[7 2 9 4 3 7 \rightarrow 1 \]

\[2 4 3 1 \]

\[1 \rightarrow 1 \]

\[1 \rightarrow 0 \]

\[4 2 \rightarrow 2 1 \]

Execution Example (cont.)

Join, join

2

4 3 1

\[7 2 9 4 3 7 \rightarrow 1 \]

\[2 4 3 1 \]

\[1 \rightarrow 1 \]

\[4 2 \rightarrow 2 1 \]
Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- One of L and G has size $n-1$ and the other has size 0
- The running time is proportional to the sum

$$\sum_{i=0}^{n-1} i$$

Thus, the worst-case running time of quick-sort is $O(n^2)$

Expected Running Time

- Consider a recursive call of quick-sort on a sequence of size s
 - **Good call**: the sizes of L and G are each less than $3s/4$
 - **Bad call**: one of L and G has size greater than $3s/4$

A call is good with probability $1/2$

Comparison-Based Sorting (§ 4.4)

- Many sorting algorithms are comparison based.
 - They sort by making comparisons between pairs of objects
 - Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...

Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort n elements, x_1, x_2, \ldots, x_n.

Counting Comparisons

- Let us just count comparisons then.
 - Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree

Decision Tree Height

- The height of this decision tree is a lower bound on the running time
- Every possible input permutation must lead to a separate leaf output.
 - If not, some input of bad orderings would cause good calls:
- The height is at least $\log(n!)$
The Lower Bound

- Any comparison-based sorting algorithms takes at least \(\log(n!) \) time.
- Therefore, any such algorithm takes time at least
 \[
 \log (n!) \geq \log \left(\frac{n}{2} \right) = (n/2) \log (n/2).
 \]
- That is, any comparison-based sorting algorithm must run in \(\Omega(n \log n) \) time.

Bucket-Sort and Radix-Sort

- Key range \([0, 9]\)
- Phase 1: Move items into buckets
 - Phase 1 takes \(O(n) \) time
 - Phase 2 takes \(O(n + N) \) time
- Bucket-sort uses the keys as indices into an auxiliary array \(B \) of sequences (buckets); \(N \) total buckets.
- Phase 1: Empty sequence \(S \) by moving each item \((k, o)\) into its bucket \(B[k] \)
- Phase 2: For \(i = 0, ..., N - 1 \), move the items of bucket \(B[i] \) to the end of sequence \(S \)

Bucket-Sort Properties

- Keys have a fixed range of values.
- Keys are NOT compared.
- bucketSort is a stable sort.
- Stable Sort Property:
 - Any two items with the same key will be in the same relative order after sorting.

Algorithm bucketSort(S, N)

Input: sequence \(S \) of (key, element) items with keys in the range \([0, N - 1]\)
Output: sequence \(S \) sorted by increasing keys
\(B \leftarrow \) array of \(N \) empty sequences
while \(\neg \text{isEmpty}(S) \)
 \(f \leftarrow S\text{first()} \)
 \((k, o) \leftarrow S\text{remove}(f) \)
 \(B[k].\text{insertLast}(f) \)
for \(i \leftarrow 0 \) to \(N - 1 \)
while \(\neg \text{isEmpty}(B[i]) \)
 \(f \leftarrow B[i]\text{first()} \)
 \((k, o) \leftarrow B[i]\text{remove}(f) \)
 \(S\text{insertLast}(f) \)
Lexicographic Order

- A d-tuple is a sequence of d keys $(k_1, k_2, ..., k_d)$, where key k_i is said to be the i-th dimension of the tuple.

Example:

The Cartesian coordinates of a point in space are a 3-tuple (x_1, x_2, x_3).

The lexicographic order of two d-tuples is recursively defined as follows:

$(x_1, x_2, ..., x_d) < (y_1, y_2, ..., y_d) \iff x_1 < y_1 \lor x_1 = y_1 \land (x_2, ..., x_d) < (y_2, ..., y_d)$

I.e., the tuples are compared by the first dimension, then by the second dimension, etc.

Radix-Sort (§ 4.5.2)

- Radix-sort uses bucket-sort to sort each dimension in a stable manner.

Radix-sort is applicable to tuples where the keys in each dimension i are integers in the range $[0, N-1]$.

Radix-sort runs in time $O(d(n+N))$.

Algorithm `radixSort(S, N)`

Input sequence S of d-tuples such that $(0, ..., 0) \leq (x_1, ..., x_d)$ and $(x_1, ..., x_d) \leq (N-1, ..., N-1)$ for each tuple $(x_1, ..., x_d)$ in S.

Output sequence S sorted in lexicographic order.

for $i \leftarrow d$ downto 1
 bucketSort(S, N, i)

Example:

$(7,4,6) (5,1,5) (2,4,6) (2,1,4) (3,2,4)$

$(2,1,4) (3,2,4) (5,1,5) (7,4,6) (2,4,6)$

$(2,1,4) (2,4,6) (3,2,4) (5,1,5) (7,4,6)$

Example

Sorting a sequence of 4-digit integers

Algorithm `base10RadixSort(S)`

Input sequence S of d-digit integers

Output sequence S sorted

replace each element x of S with the item $(0, x)$

for $i \leftarrow 0$ to $d-1$
 replace the key k of each item (k, x) of S with digit x_i of x

bucketSortS(S, 10)