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Outline

• Brief overview of differential equations and examples of use of
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• Examples of mathematical models in of HIV research

Estimation of dynamic parameters;

Failure of prediction of long term outcomes;

Formal comparison of two models
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Data where the mean structure is of interest

• Often statistical analysis involves evaluating the variability in a

set of data in order to

Compare mean of two or more groups;

Obtain confidence intervals (precision) for an estimated mean

• When longitudinal data exhibit a complex nonlinear pattern,

describing the time-varying mean of the data is of interest.

• If an underlying mechanism which generates the data is known or

hypothesized, a mathematical model can be developed which

describes the time-varying mean structure.
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Differential equations

An ordinary differential equation (ODE) is an equation whose

solution is a function of time. The differential equation relates

various derivatives (wrt time) of the function to each other through

the equation. Solving the ODE means finding the function that

satisfies it

Example
dX(t)

dt
= −δX(t), X(0) = X0
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Differential equations

An ordinary differential equation (ODE) is an equation whose

solution is a function of time. The differential equation relates

various derivatives (wrt time) of the function to each other through

the equation. Solving the ODE means finding the function that

satisfies it

Example
dX(t)

dt
= −δX(t), X(0) = X0

has solution

X(t) = X0e
−δt

which can be checked

dX(t)

dt
= X0e

−δt
∗ (−δ) = −δX, X(0) = X0e

0 = X0
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Differential equations in medicine and biology

• The most frequent use of ODE’s in medicine and biology is in

pharmacokinetics/dynamics to describe drug concentrations over

time.
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Differential equations in medicine and biology

• The most frequent use of ODE’s in medicine and biology is in

pharmacokinetics/dynamics to describe drug concentrations over

time.

• In recent years, ODE models have been used to study the

dynamics of a HIV viral load within an infected patient.

• The metabolism of environmental toxins is sometimes described

using ODEs: Physiokinetic models.

• Tumor growth (the size of tumors over time) has been modeled

using ODEs.
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Relationship between the model and data

Throughout the rest of the presentation, the time-varying data is

assumed to have mean described by one (or more) compartments of a

system of ODE’s.

Yt ∼ N(X(t, θ), σ2)

where X(t, θ) is the solution to a system of ODEs and θ are

parameters in ODEs.

Usually, parameter estimation based on observed data is the analysis

of interest, and is conducted by minimizing

minθ

n∑

i=1

(X(t, θ) − Yti
)2

This method is often referred to as ’nonlinear least squares

regression’.
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Why use a model?

• To describe a nonlinear time-varying mean structure.

• To relate a parameter in an unobserved compartment to a

compartment which is observed

• Example: In HIV infected patients, Viral load is generally

observed but infected cells are not generally observed, however

the rate at which infected cells decay or die is of scientific and

clinical interest.
• The model provides the relationship between observed viral load

data and infected cell death rate, so that this rate can be

estimated from data on observed viral load.
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Model equations for viral dynamics before treatment

Perelson et.al. Science 1996

dX

dt
= kTV − δX

dV

dt
= NδX − cV

has “states” which vary with time,

• X(t) = population of infected cells at time t

• V (t) = the population of viral RNA at time t

and “parameters” which are (generally) constant

• k = infection rate, δ = infected cells death rate.

• N = the viral production, C viral clearance.
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Model equations for viral decay after treatment

dX

dt
= kTVI − δX

dVI

dt
= −cVI

dVNI

dt
= NδX − cVNI

• VI is the population of infectious virus (produced before

treatment)

• VNI is the population of non-infectious virus (produced after

treatment)

• V = VI + VNI is the total observed viral load

• Observed data, (ti, log(vi)) ∼ N(log(V (t, C, delta)), σ2)
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Simulated viral load up to 7 days post treatment
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Conclusions based estimates of viral decay and infected cell clearance rates

• Since HIV infection often lasts many years before the onset of

AIDS, it was believed that the virus was relatively dormant

during this time.

• Estimates of δ and C showed that viral clearance and infected

cell turnover were occurring at a much more rapid rate than

previously believed.

• Rapid viral clearance implies that virus is being produced rapidly

and continuously and partially explains why HIV can mutate so

rapidly.
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Predictions of long term outcomes and model comparison

Bi-phasic viral decay, more than one infected cell compartment produces virus

Perelson et.al. Nature 1997

Constant Decay Model

dX

dt
= −δX

dY

dt
= −µY

dV

dt
= pxX + pyY − cV

• X is the population of short lived infected cells

• Y is the population of longer lived infected cells

• V is cell free viral RNA
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Viral decay after treatment in children

Constant decay model

0 50 150 250

1 
  e

+0
5

1 
  e

+0
7

1 
  e

+0
9

Days past treatment

V
ira

l L
oa

d

delta =  0.27
mu =  0.032

0 50 150 250

1 
  e

+0
5

1 
  e

+0
7

1 
  e

+0
9

Days past treatment

V
ira

l L
oa

d

delta =  0.8
mu =  0.02

0 50 150 250

1 
  e

+0
5

1 
  e

+0
7

1 
  e

+0
9

Days past treatment

V
ira

l L
oa

d

delta =  0.32
mu =  0.001

0 50 150 250

1 
  e

+0
5

1 
  e

+0
7

1 
  e

+0
9

Days past treatment

V
ira

l L
oa

d

delta =  0.12
mu =  0.01

0 50 150 250

1 
  e

+0
5

1 
  e

+0
7

1 
  e

+0
9

Days past treatment

V
ira

l L
oa

d

delta =  0.14
mu =  0.006

0 50 150 250

1 
  e

+0
5

1 
  e

+0
7

1 
  e

+0
9

Days past treatment

V
ira

l L
oa

d

delta =  1.28
mu =  0.095

13



Conclusions based on Constant Decay model
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• Estimates of δ and µ using plasma viral load are obtained and

used to estimate time on treatment of approximately 2 years to

eradicate virus
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Adjustment to the constant decay model

• As data from even longer periods of time post treatment became

available it became apparent that virus was not eradicated even

after many years of successful treatment.
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Adjustment to the constant decay model

• As data from even longer periods of time post treatment became

available it became apparent that virus was not eradicated even

after many years of successful treatment.

• Studies with longer follow-up tended to provide slower second

phase decay estimates.

• Consider an alternate model and make a formal statistical

comparison to see if the constant decay model can be rejected
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Alternative to the constant decay model

Holte et.al. JAIDS 2006

Density Dependant Decay Model

dX

dt
= −δX

dY

dt
= −µY

dV

dt
= pxX + pyY − cV

• X is the population of short lived infected cells

• Y is the population of longer lived infected cells

• V is cell free viral RNA
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Alternative to the constant decay model

Holte et.al. JAIDS 2006

Density Dependant Decay Model

dX

dt
= −δXr

dY

dt
= −µY r

dV

dt
= pxX + pyY − cV

• X is the population of short lived infected cells

• Y is the population of longer lived infected cells

• V is cell free viral RNA

Null hypothesis: Constant decay model is correct, r = 1
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Density Dependant Decay model results
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Density Dependant Decay model results - Continued

• The parameter r is significantly greater than 1 for all but one

child suggesting that that the constant decay model is not

appropriate for the observed data.
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Density Dependant Decay model results - Continued

• The parameter r is significantly greater than 1 for all but one

child suggesting that that the constant decay model is not

appropriate for the observed data.

• Very different conclusions about the long term dynamics of viral

load after treatment depending on which model is used for

prediction and inference.

• This example demonstrates how very similar models can provide

very different conclusions.
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Density dependant vs constant decay model - time to eradication
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Density dependant vs constant decay model - time to eradication
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Conclusions based on models for viral decay after treatment
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• Using models to make predictions is subject to the dangers of the

potential for incorrect mathematical models....
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potential for incorrect mathematical models....

• ... in addition to extrapolating beyond the range of observed

data

• Analysis using density dependant decay model allow us to reject

the null hypothesis that the constant decay model accurately

describes the data.
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• Using models to make predictions is subject to the dangers of the

potential for incorrect mathematical models....

• ... in addition to extrapolating beyond the range of observed

data

• Analysis using density dependant decay model allow us to reject

the null hypothesis that the constant decay model accurately

describes the data.

• Additional methods for model comparison are needed.
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Conclusions

• Combing mathematical models to describe time-varying mean

structure with formal statistical techniques for estimation and

inference can provide insight to complex biological behaviors.

• However, models can be (and usually are) wrong over long

periods of time so that extrapolating over long periods of time is

dangerous.

• A good analyst will know the strengths and weaknesses of using

mathematical models in the analysis of time-varying data.
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