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m Abstract Itis widely but incorrectly believed that the t-test and linear regression
are valid only for Normally distributed outcomes. The t-test and linear regression
compare the mean of an outcome variable for different subjects. While these are valid
even in very small samples if the outcome variable is Normally distributed, their major
usefulness comes from the fact that in large samples they are valid for any distribution.
We demonstrate this validity by simulation in extremely non-Normal data. We discuss
situations in which in other methods such as the Wilcoxon rank sum test and ordinal
logistic regression (proportional odds model) have been recommended, and conclude
that the t-test and linear regression often provide a convenient and practical alternative.
The major limitation on the t-test and linear regression for inference about associations
is not a distributional one, but whether detecting and estimating a difference in the
mean of the outcome answers the scientific question at hand.

INTRODUCTION

It is widely but incorrectly believed that the t-test and linear regression are valid
only for Normally distributed outcomes. This beliefleads to the use of rank tests for
which confidence intervals are very hard to obtain and interpret and to cumbersome
data-dependent procedures where different transformations are examined until a
distributional test fails to reject Normality. In this paper we re-emphasize the
uncontroversial statistical facts that the validity of the t-test and linear regression
in sufficiently large samples depends only on assumptions about the variance of the
response and thatviolations of those assumptions can be handled easily for the t-test
(and with slightly more difficulty for linear regression). In addition to reviewing

the literature on the assumptions of the t-test, we demonstrate that the necessary
sample size is relatively modest by the standards of today’s public health research.
This is true even in one of the most extreme kinds of data we have encountered,
annualized medical costs. We should note that our discussion is entirely restricted
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toinference about associations between variables. When linear regressionis used to
predict outcomes for individuals, knowing the distribution of the outcome variable
is critical to computing valid prediction intervals.

The reason for the widespread belief in a Normality assumption is easy to see.
If outcomes are indeed Normally distributed then several different mathematical
criteria identify the t-test and ordinary least squares regression as optimal analy-
ses. This relatively unusual convergence of criteria makes the Normal theory an
excellent example in mathematical statistics, and leads to its popularity in both
theoretical and applied textbooks. The fact that the Normality assumption is suf-
ficient but not necessary for the validity of the t-test and least squares regression
is often ignored. This is relatively unimportant in theoretical texts, but seriously
misleading in applied books.

In small samples most statistical methods do require distributional assumptions,
and the case for distribution-free rank-based tests is relatively strong. However, in
the large data sets typical in public health research, most statistical methods rely
on the Central Limit Theorem, which states that the average of a large number of
independent random variables is approximately Normally distributed around the
true population mean. It is this Normal distribution of an average that underlies
the validity of the t-test and linear regression, but also of logistic regression and
of most software for the Wilcoxon and other rank tests.

In situations where estimation and comparison of means with the t-test and
linear regression is difficult because of extreme data distributions, it is important
to consider whether the mean is the primary target of estimation or whether some
other summary measure would be just as appropriate. Other tests and estimation
methods may give narrower confidence intervals and more powerful tests when
data are very non-Normal but at the expense of using some other summary measure
than the mean.

In this review we begin by giving the statistical background for the t-test and
linear regression and then review what the research literature and textbooks say
about these methods. We then present simulations based on sampling from a large
data set of medical cost data. These simulations show that linear regression and the
t-test can perform well in moderately large samples even from very non-Normal
data. Finally, we discuss some alternatives to the t-test and least squares regression
and present criteria for deciding which summary measure to estimate and what
statistical technique to use.

DEFINITIONS AND THEORETICAL ISSUES

Least-Squares Techniques

We will discuss first the two-sample t-test, and then linear regression. While the
t-test can be seen as merely a special case of linear regression, it is useful to
consider it separately. Some more details of the calculations and a review of the
Central Limit Theorem can be found in Appendix 1.
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The t-Test

Two different versions of the two-sample t-test are usually taught and are available
in most statistical packages. The differences are that one assumes the two groups
have the same variance, whereas the other does not. The t-statistic, which does
not assume equal variances, is the statistic in Equation 1. In Appendix 1 we show
that, because of the Central Limit Theorem, this is normally distributed with unit
variance when the sample size is large, no matter what distrib¥tias. Thus,

this version of the t-test will always be appropriate for large enough samples. Its
distribution in small samples is not exact t distribution even if the outcomes

are Normal. Approximate degrees of freedom for which the statistic has nearly a

t distribution in small samples are computed by many statistical packages.
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We next mention the version of the t-statistic that assumes the variances in the two
groups are equal. This, the original version of the test, is often used in introductory
statistics because when the data do have a Normal distribution, the statistic in
Equation 2 has exagth t distribution with a known number of degrees of freedom.
One would rarely prefer this statistic in large samples, since Equation 1 is more
general and most statistical programs compute both versions. However, Equation
2 is useful in illustrating the problem dieteroscedasticity
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Equation 2 differs from Equation 1 in combining the two group variances to es-
timate a pooled standard deviation. It is identical to that in Equation 1 if either
N = npyorsf = s The two forms will be similar ify; andn, or o2 ando are
similar, as is often the case. However, it is possible for them to differ in extreme
situations. Suppose; is much larger tham,. In that case, the denominator of

the t-statistic in Equation 1 can be seen to be primarily a functioss,ofhile

the denominator of the t-statistic in Equation 2 is primarily a functiors®of

If the variances in the two groups are different, this can result in the two t-statistics
having different denominators. For examplayifs ten times as big a%, and the

two variances also differ by a factor of 10, then Equation 1 will still be appropriate
but Equation 2 will be too small or too large by a factor of about 2, depending on
which group has the larger variance. In such an extreme case, it would be possible
to make an incorrect inference based on Equation 2. That is, the Central Limit
Theorem guarantees that the t-statistic in Equation 2 will be normally distributed,
but it may not have variance equal to 1. This is not a problem in practice because
we can always use Equation 1, but severe heteroscedasticity will cause problems
for linear regression, as is discussed below.
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Linear Regression

As with the t-test, least-squares linear regression is usually introduced by assuming
thatY is Normally distributed, conditional oK. This is not quite the same as
saying thaty must be Normal; for exampl&,for men and women could each have

a different Normal distribution that might appear bimodal when men and women
are considered together. That they were Normally distributed when controlling
for sex would satisfy the usual Normality assumption. Normality is not required
to fit a linear regression; but Normality of the coefficient estimatds needed

to compute confidence intervals and perform testsgAs a weighted sum of

(see Appendix 1), the Central Limit Theorem guarantees that it will be normally
distributed if the sample size is large enough, and so tests and confidence intervals
can be based on the associated t-statistic.

A more important assumption is that the varianc® ¢f constant. As with the
t-test, differences in the variancefor different values oK (heteroscedasticity)
result in coefficient estimatethat still have a Normal distribution; as with Equa-
tion 2 above, the variance estimates may be incorrect. Specifically, if the predictor
X has a skewed distribution anthas different variance for large and small values
of X, the variance of8 can be estimated incorrectly. This can be related to the
conditions for t-test (2) to be incorrect by writing the t-test as a linear regression
with a single binary predictor variable. A binary predictor X is skewed when the
proportionsp with X=0 and the proportiom=1— p with X =1 are different
[the skewness is equal tq £ p)pg]. Thus the condition thaX is skewed and is
heteroscedastic in this linear regression is the same as the conditiorath >
both differ between groups for the t-test. Madifications analogous to{itesb
provide reliable inference in the presence of substantial heteroscedasticity exist but
are not widely implemented in statistical software. In the case of the t-test, we saw
that heteroscedasticity must be extreme to cause large biases; in our simulations
below we examine this question further for linear regression.

LITERATURE REVIEW

Anunwritten assumption of much of the literature on the t-testis that all two-sample
tests are effectively testing the same null hypothesis, so that it is meaningful to
compare the Type | and Type |l error rates of different tests. This assumption
is frequently untrue, and testing for a difference in means between two samples
may have different implications than testing for a difference in medians or in
the proportion above a threshold. We defer until later a discussion of these other
important criteria for selecting an estimator or test. Most of the literature on the
assumptions of the t-test is concerned with the behavior of the t-test in relatively
small samples, where it is not clear if the Central Limit Theorem applies.

For linear regression, the statistical literature largely recognizes that heterosce-
dasticity may affect the validity of the method and non-Normality does not. The
literature has thus largely been concerned with how to model heteroscedasticity
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and with methods that may be more powerful than linear regression for non-Normal
data. These issues are outside the scope of our review.

A number of authors have examined the level and power of the t-test in fairly
small samples, without comparisons to alternative tests. Barrett & Goldsmith (4)
examined the coverage ofthe t-testin three small data sets, and found good coverage
for sample sizes of 40 or more. Ratcliffe (22) looked at the effect on the t distribution
of non-Normality, and provided an estimate of how large n must be for the t-test to
be appropriate. He examined sample sizes of up to 80 and concluded that “extreme
non-Normality can as much as double the value oftat the 2.5% (one tail) probability
level for small samples, but increasing the sample sizes to 80, 50, 30, and 15 will
for practical purposes remove the effect of extreme skewness, moderate skewness,
extreme flatness, and moderate flatness, respectively.” We note that the one-tailed
tests he studied are more sensitive to skewness than two-tailed tests, where errors
in the two tails tend to compensate. Sullivan & d’Agostino (32) found that t-tests
produced appropriate significance levels even in the presence of small samples (50
or less) and distributions in which as many as 50% of the subjects attained scores
of zero.

Sawilowsky & Blair (23) examined the robustness of the t-test to departures
from Normality using Monte Carlo methods in 8 data sets with sample sizes up to
120. They found the t-test was robust to Type Il error. Sawilowsky & Hillman (24)
showed that power calculations based on the t-test were appropriate, even when
the data were decidedly non-Normal. They examined sample sizes up to 80.

The bootstrap (12) provides another method of computing confidence intervals
and significance levels using the t-statistic. The bootstrap is a general-purpose
method for estimating the sampling distribution of any statistic computed from in-
dependentobservations. The sampling distribution is, by definition, the distribution
of the statistic across repeated samples from the same population. The bootstrap
approximates this by assuming that the observed sample is representative of the
population and by taking repeated samples (with replacement) from the observed
sample. The bootstrap approach usually requires some programming even in sta-
tistical packages with built-in bootstrap facilities [e.g., Stata (29) and S-PLUS
(17)]. There is a wide theoretical and applied literature discussing and extending
the bootstrap, much of which is summarized in books by Efron & Tibshirani (12)
and Davison & Hinkley (9).

Bootstrapping for comparing means of non-Normal data has been evaluated
in the context of cost and cost-effectiveness studies. Barber & Thompson (3)
recommended a bootstrap approach for testing for differences in mean costs. They
presented two examples, with sample sizes of 184 and 32 patients, respectively.
In both cases, the p-values and the confidence intervals were very similar using
the t-test and using the bootstrap procedure. Rascati et al. (21) concluded that the
bootstrap was more appropriate, but they only examined the distribution of the
cost data, not the more relevant sampling distribution of the mean.

In a practical setting, the t-test should be discarded only if a replacement can
perform better, so comparisons with other tests are particularly important. Cohen &
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Arthur (8) looked at samples of 25 per group and found that t-tests on raw, log, and
square transformed data; the Wilcoxon test; and a randomization test all exhibited
satisfactory levels of alpha error, with the randomization test and the t-test having
the greatest power. Stonehouse & Forrester (30) found that the unequal-variance
form of the t-test performed well in samples drawn from non-Normal distributions
but with different variances and sample sizes. The Wilcoxon test did not perform
as well. Zimmerman (34) compared the t-test to the Wilcoxon test when data were
non-Normal and heteroscedastic and found that the t-test performed better than the
Wilcoxon. Zimmerman & Zumbo (35) found that rank methods are as influenced by
unequal variances as are parametric tests, and recommended the t-test. Skoviund &
Fenstad (27) also found that the t-test was superior to the Wilcoxon when variances
were different.

Theoretical results on the properties of the t-test are mostly over 30 years old.
These papers mostly examine how the skewness and kurtosis of the outcome
distribution affects the t-statistic in fairly small samples. In principle, they could
be used to create a modified t-statistic that incorporated estimates of skewness and
kurtosis. At least one such test (7) has achieved some limited applied use. The
original references appear to be to Gayen (14) and Geary (15), who approximated
the distribution of the t-statistic in non-Normal distributions. They were followed
by other authors in producing better approximations for very small samples or
extreme non-Normality.

In contrast to the t-test, there has been little empirical research into the behavior
of linear regression for non-Normal data. Such research typically focuses on the
effects of extreme outliers, under the assumption that such outliers are caused
by errors or at least may be excluded from the analysis. When residuals are not
Normally distributed, these robust regression methods may be useful for finding
the line that best fits the majority of the data, ignoring some points that do not
fit well. Robust regression methods do not model the mean of Y but some other
summary of Y that varies from method to method. There is little literature on robust
regression at an elementary level, but chapters by Berk (5) and Goodall (16) are
at least addressed to the practising statistician rather than the theoretician.

Textbooks of biostatistics frequently describe linear regression solely in the
context of Normally distributed residuals [e.g., Altman (2), Fisher & van Belle
(13), Kleinbaum et al. (18)] where it is the optimal method for finding the best-
fitting line; however, the least-squares method was invented as a nonparametric
approach. One of the inventors, Legendre [quoted by Smith (28)], wrote,

Of all the principles which can be proposed for that purpose, | think there is
none more general, more exact, and more easy of application, that of which
we made use in the preceding researches, and which consists of rendering the
sum of squares of the errors a minimum.

Discussions of linear regression that do not suppose Normality are relatively rare.
One from an impeccable statistical authority is that of Stuart et al. (31). More
commonly, a Normality assumption is presented but is described as less important
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than other assumptions of the model. For example, Kleinbaum et al. (18, p. 117)
wrote,

[Normality] is not necessary for the least-squares fitting of the regression
model but it is required in general for inference making only extreme
departures of the distribution of Y from normality yield spurious results.

This is consistent with the fact that the Central Limit Theorem is more sensitive to
extreme distributions in small samples, as most textbook analyses are of relatively
small sets of data.

SIMULATIONS

The simulations in much of the statistical literature we reviewed refer to sample
sizes far smaller than those commonly encountered in public health research. In
an effort to fill part of this gap, this section describes some simulations that we
performed with larger samples. We used data from the evaluation of Washington
State’s Basic Health Plan, which provided subsidized health insurance for low-
income residents, starting in 1989 (10, 19). The 6918 subjects in the study were
enrolled in four health plans, 26% in a health maintenance organization (HMO) and
74% in one of three independent practice associations (IPA). Subjects were aged
0to 65 (mean 23 years) and were followed for an average of 22 months (range 1 to
44 months). Length of follow-up depended on when the person joined the program
relative to the end of the evaluation period, and is probably not related to the
person’s health. During the study period 79% used some services. As examples we
use the variables “cost of outpatient care,” age, sex, and self-rated general health.
The last variable is abbreviated EVGFP, for “excellent/very good/good/ fair/poor.”

Example of Central Limit Theorem

The Central Limit Theorem depends on the sample size being “large enough,” but
provides little guidance on how large a sample might be necessary. We explored
this question using the cost variable in the Washington Basic Health Plan data.
Annualized outpatient cost has a very long right tail, as shown in Figure 1. We

truncated the histogram at $3000 so that the distribution for lower values could

be seen, but use the full distribution in the following analysis. The actual costs

ranged from $0 to $22, 452, with a mean of $389. The standard deviation is $895,
standardized skewness is 8.8, and standardized kurtosis is 131.

Figure 2 shows the sampling distribution of 2000 means of random samples of
size 65, 129, 324, and 487 from this very non-Normal distribution (approximately
1%, 2%, 5%, and 7.5% of the population). The graph shows a histogram and a
smooth estimate of the distribution for each sample size. It is clear that the means
are close to Normally distributed even with these very extreme data and with
sample sizes as low as 65.
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Figure 1 Distribution of annualized medical costs in the Washington Basic Health Plan.

Example for Linear Regression

Medical costs usually have the very non-Normal distribution we see here, but trans-
formations are undesirable as our interest is in total (or mean) dollar costs rather
than, say, log dollars (11). We considered the 6918 subjects to be the population of
interest and drew samples of various sizes to determine whether the test statistics
of interest had the distribution that was expected.

Inaddition, there is substantial heteroscedasticity and a somewhat linear relation
between the mean and variance. In Figure 3 we divided subjects into groups by
age and sex and calculated the mean and standard deviation of cost for each group.
Itis clear that the standard deviation increases strongly as the mean increases. The
data are as far from being Normal and homoscedastic as can be found in any real
examples.

We used these data to determine how large a sample would be needed for the
Central Limit Theorem to provide reliable results. For example, as illustrated on the
first line of Table 1, we drew 1000 1% samples, of average size 65, from the popu-
lation. For each sample we calculated the regression of cost on age, sex, self-rated
health, and HMO (IPA=0) versus Fee for Service (IRA1). For each parameter
in the regression model we calculated a 95% confidence interval and then checked
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Figure 2 Distribution of means of samples of annualized costs.

to see whether the confidence interval contained the true value. The percent of
times that the confidence interval included the value computed from the entire
population of 6918 is an estimate of the true amount of confidence (coverage) and
would be 95% if the data had been Normal to start with. For samples of size 65
and 129, some of the confidence interval coverages are below 90%. That means
that the true alpha level would be 10% or more, when the investigator believed it to
be 5%, yielding too many significant regression coefficients. Note that for sample
sizes of about 500 or more, the coverage for all regression coefficients is quite
close to 95%. Thus, even with these very extreme data, least-squares regression
performed well with 500 or more observations.

These results suggest that cost data can be analyzed using least-squares ap-
proaches with samples of 500 or more. Fortunately, such large samples are usually
the case in cost studies. With smaller samples, results for variables that are highly
significant (p< .001, for example) are probably reliable. Regression coefficients
with p-values between .001 and .10, say, might require additional analysis if they
are important.

For data without such long tails much smaller sample sizes suffice, as the
examples in the literature review indicate. For example, at one time a popular
method of generating Normally distributed data on a computer was to use the sum
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Figure 3 The relationship between mean and standard deviation of annualized costs, in
age-sex subgroups.

of asample of 12 uniformly distributed random numbers. The resulting distribution
was not just close enough to Normal for statistical purposes, it was effectively
indistinguishable from a Normal distribution. Similarly, the familiar rule that2
tables should have expected counts of at least 5 fdrtast comes from applying

the Central Limit Theorem to binary variables.

ALTERNATIVES TO LEAST-SQUARES APPROACHES

The literature summarized above and our simulations illustrate that linear regres-
sion and the t-test can perform well with data that are far from Normal, at least
in the large samples usual in public health research. In this section we examine
alternatives to linear regression. In some disciplines these methods are needed to
handle small samples of non-Normal data, but in reviewing their appropriateness
for public health research we focus on other criteria. These methods usually come
with their own sets of assumptions and they are “alternatives” to least-squares
methods only when no specific summary statistic of interest can be identified, as
we discuss in the next section.

We examine the Wilcoxon rank-sum test as an alternative to the t-test and the
logistic and proportional odds models as alternatives to linear regression.



Annu. Rev. Public. Health. 2002.23:151-169. Downloaded from www.annualreviews.org
by University of Washington on 04/24/13. For personal use only.

NORMALITY ASSUMPTION 161

TABLE 1 Coveragéresults for the mean and coefficients from multivariable
regression. (Based on 1000 replicates)

% of population ~ Ninsample Mean b-age b-sex b-EVGFP  Db-IPA

1 65 88.5 89.7 96.4 88.8 93.1
129 90.5 89.9 96.3 88.4 91.5

5 324 92.4 89.9 97.5 91.3 93.8
7.5 487 94.0 90.3 97.3 92.3 94.0
10 649 94.9 91.2 97.7 92.5 94.7
15 973 95.8 92.9 98.3 94.3 96.0
20 1297 96.2 92.6 98.4 95.0 97.1

aCoverage is the % of time that the (nominal) 95% confidence included the true mean, out of 1000 replicates.
bNot always the same because some of the data are missing—468 to 500.
°Range from 629-669 because of missing data.

Wilcoxon and Other Nonparametric Tests

The Wilcoxon two-sample test is said to be nonparametric because no particular
distribution is assumed for the data. The test simply ranks all of the data and calcu-
lates the sum of the ranks for one of the groups. It is possible to test how likely that
sum would be under the null hypothesis that the two distributions were identical.
The Wilcoxon test can thus be performed without distributional assumptions even
in very small samples. It is sometimes described as a test for the median, but this
is not correct unless the distribution in the two groups is knawariori to have

the same shape. It is possible to construct distributions with arbitrarily different
medians for which the Wilcoxon test will not detect a difference.

The Wilcoxon test is widely known to be more powerful than the t-test when
the distribution of data in the two groups has long tails and has the same shape in
each group but has been shifted in location. Conversely, it is less powerful than
the t-test when the groups differ in the number and magnitude of extreme outlying
distributions, as recognized in EPA guidelines for testing for environmental con-
tamination in soil (33). Although its power relative to other tests depends on the
details of the null and alternative hypotheses, the Wilcoxon test always has the dis-
advantage that it does not test for equality in any easily described summary of the
data. This is illustrated by the analysis of Rascati et al. (21) in comparing overall
medical costs for asthmatics prescribed steroids compared with other treatments.
Although the mean cost was lower in the steroid group, a Wilcoxon test reported
significantly higher costs for that group. A related disadvantage is that it is not
easy to construct confidence intervals that correspond to the Wilcoxon test.

EXAMPLE As an example, we compared the outpatient cost for people who rated
themselves in poor health to those in fair healtb=(b03 and 340, respectively).
The t-test showed that the mean costs in the poor and fair groups were $960 and
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$727, respectively; the mean difference is $234; the 95% confidence interval for
the difference£$72 to+ $540); t= 1.51; p= 0.133. The Wilcoxon test provides

the information that the mean rank of costs in the poor and fair groups were 245.51
and 214.88; that the sum of ranks was 25288 versus 73058; the Wilcoxon statistic
was 73058 and the p-value 0.033. The Wilcoxon test thus yielded a more significant
result than the t-test, but did not provide any useful descriptive statistics. The data
for the two groups did not seem to have the same shape, based on a histogram.

Logistic Regression

When the dependent variable is binary, the most common analytic method is
logistic regression. In this approach the assumptions fit the data. Further, the (ex-
ponentials of the) regression parameters can be interpreted as odds ratios, which
are nearly identical to relative risks when the event under study is rare.

Another possible approach is least-squares linear regression, Ehb@ne 0/1
binary variable. Such an approach is not usually considered appropriate because
Y is not Normally distributed; however, the Central Limit Theorem ensures that
the regression coefficients will be Normally distributed for large enough samples.
Regression estimates would be a weighted sum of'tgewhich are 0’ and 1's.

The usual rule for the binomial distribution is that proportions are approximately
Normal ifnp> 5 andn(1 — p) > 5, which should hold for the large data sets we are
considering. Another objection to the linear regression approach is that estimated
proportions can be below 0 or greater than 1. This is a problem if the goal is to
predict a probability for an individual, and the sample is small. It will rarely be

a problem when the goal is to assess the effects of independent variables on the
outcome. A final objection is that the homoscedasticity assumption is violated,
since the variance is a function of the mean. The usual rule of thumb is that if
proportions are between, say, 0.2 and 0.8, the variance is approximately constant
and heteroscedasticity is not a serious problem.

Linear regression might actually be preferred in some situations. Logistic re-
gression assumes a multiplicative model, whereas linear regression provides an
additive model which is sometimes more biologically plausible. The public health
significance of estimates of risk and risk difference provided by a linear model is
often clearer than that of odds ratios. Odds ratios can be hard to interpret when
the event is not rare. This was dramatically demonstrated by a recent study of
racial bias in referrals for cardiac catheterization (25), when an odds ratio of 0.6
was widely quoted in the mass media as showing a 40% percent lower chance
of referral for blacks. The relative risk was actually 0.87 (26). Although logistic
regression is the standard of practice for binary dependent variables, the investi-
gator may sometimes find linear regression useful and should not be deterred by
perceived problems with non-Normality.

EXAMPLE As an example, we calculated a regression to predict use of any out-
patient services as a function of gender, using both logistic and OLS regression.
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The linear regression of use (0/1) from sex (0/1) yielded a coefficient of 0.0663
(t=6.78); the interpretation is that the use of services was 6.63 percentage points
higher for women than for men. The same analysis run as a logistic regression
yielded a slope of 0.402, and an estimated odds ratio of 1.495, Wald statis-
tic =45.4. The square root of the Wald statistic is 6.74, about the same as the
t-statistic from linear regression.

Linear and logistic regression both give valid results in this example, but the
information that the utilization among women is about 7% higher than among men
may be more interpretable than the 50% relative increase in odds of utilization. It
is of interest that although the odds ratio is 1.5, the relative risk is about 1.1.

Proportional Odds Model

Ordered categorical data commonly arise from assigning values to a scale that
cannot be readily quantified. In our example data, participants are asked if their
health is “excellent, very good, good, fair, or poor,” producing a variable with five
ordered categories. As there is no unique objective way to assign numerical values
to these categories, it is often argued that the analysis should not depend on any
particular assignment of scores.

In estimation and particularly in regression modeling, however, we would often
like a single summary that describes how the outcome varies with the predictors.
The behavior of a five-level category cannot be reduced to a single summary
statistic without imposing some restrictions.

One popular model for analyzing ordered data is the ordinal logistic regression
or proportional odds model. An ordered categorical response can be collapsed
into a binary (proportional odds) model (1, 20). This model is based on the binary
variables created by dichotomizing the ordinal response at any threShgildng
the model

logit P[Y > C] = ac + B1 X1+ B2 Xo + -+ + BpXp.

Dichotomizing at a different leveC necessarily changeg: as this is related to

the proportion of outcomes abo@ The proportional odds model assumes that
this is the only change and thgi, 8o, . . ., B, remain the same. Although it does

not make distributional assumptions, it does makes strong assumptions about the
relationships between categories.

An alternative approach is to assign numerical scores to the categories, either
using a default 1, 2, 3, 4, 5 or basing the scores on scientific knowledge about the
underlying scale. Itis then possible to analyze ordered categorical data by ordinary
least squares regression. If two groups have the same probability distribution, the
mean measurement will be the same, no matter how numbers are assigned to
each possible level of outcome. Furthermore, if there is in fact a tendency for
higher measurements to predominate in one group more than the other, the mean
will tend to be shifted in that direction. In this setting, however, there is no clear
scientific interpretation of the size of a nonzero difference in the means, leading



Annu. Rev. Public. Health. 2002.23:151-169. Downloaded from www.annualreviews.org
by University of Washington on 04/24/13. For personal use only.

164

LUMLEY ET AL.

to the difficulties in interpretation similar to those with the Wilcoxon and other
nonparametric tests. There is also a potential problem with heteroscedasticity in
assigning scores, but as with binary data, this is only likely to be important if a
large majority of the observations are in the highest or lowest categories.

EXAMPLE We predicted whether an adult’s health would be excellent, very good,
good, fair, or poor based on whether or not he or she had less than a high school ed-
ucation. We examined the assumption that dichotomization at any level of EVGFP
gave the same level. If we compared excellent to the other four categories, the
odds ratio (OR) was 0.50; breaking at very good, the OR was 0.45; at good, the
OR was 0.42; and the OR from dichotomizing below Fair was 0.70. The last odds
ratio was not significantly different from the others (95% confidence interval of
0.38 to 1.30). The ordered logistic regression gave a common odds ratio of 0.46.
The interpretation is that wherever one cuts the health variable, the odds of being
in the healthy group are about half as high for persons with only a high school
education. As above, the odds ratio is not the same as the relative risk, since being
in the “high” health category is not a rare outcome.

A linear regression whergtakes on the values from 1 (poor) to 5 (excellent)
achieves a coefficient 06£0.42 and a t-statistic of£7.55. The interpretation is
that adults with low education are about a half-category lower in health than
those with more education. The t-statistics for the linear and the ordered logistic
regressions are nearly identical. While neither model is ideal in terms of scientific
interpretation, it is easier to give a precise description of the results for the linear
model than for the proportional odds model. In the absence of any strong reason
to trust the proportional odds assumption the linear model would be a sensible
default analysis.

REASONS FOR CHOOSING AN ESTIMATOR OR TEST

It is rarely necessary to worry about non-Normality of outcome variables. It is
necessary to worry about heteroscedasticity in linear regression, though, as the
example shows, even with significant heteroscedasticity the performance of linear
regression is often good.

The fact that these methods are often valid does not mean that they are ideal
in all cases, merely that the reasons for choosing other analyses are different from
those often given. The t-test and linear regression both estimate differences in the
mean of the outcome. In some cases, this is precisely what is of interest: Health
care suppliers, for example, care about the mean cost of care. In other cases, some
other summary is appropriate: Median income or percentage living in poverty may
be more relevant in considering access to health care. Although costs and income
are both measured in dollars, and both have strongly skewed distributions, different
questions lead to different choices of summary statistic.

In other examples, the choice between mean, median, and percentage below
some threshold may be less obvious. The decision of whether to base a data analysis
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on a particular summary measure, if any, should be based on the following criteria
(in order of importance): clinical or scientific relevance of the summary measure,
scientific plausibility that the groups would differ with respect to the summary
measure, and statistical precision with which the groups can be compared using
the summary measure.

If the question under investigation identifies the preferred analysis, as with
comparing total medical care costs, other criteria are irrelevant. It may be easier to
estimate differences in, say, the median, but differences in the median need not be
a good guide to differences in the mean and so are of little interest. This is what
happened in the analysis of Rascati et al. (21) discussed above, where a Wilcoxon
test indicated significant cost differences in the opposite direction to the difference
in mean costs.

On the other hand, we may not know which summary measure is most impor-
tant, but have some idea which summary measure is most likely to be affected.
Consider a cholesterol-lowering drug, where it might be the case that the treatment
is thought to work only in individuals whose initial cholesterol measurement is
extremely high. In this setting, there may be no difference between treated and un-
treated populations with respect to the median cholesterol level, though the mean
cholesterol level in the treated group would be lower, as would the proportion
of individuals exceeding some high threshold. However, if in that same example
the drug is thought not to have effect in individuals with the most severe dis-
ease, then neither the median cholesterol level nor the proportion of individuals
having cholesterol higher than, say, 350 mg/dl might differ between the control
and treatment groups. The mean cholesterol level might still differ between the
groups owing to the segment of the population with moderately high cholesterol
for whom the treatment was effective. A t-test would then detect this difference,
but a comparison of medians might not.

Finally, we may have no real knowledge of which summary statistic is most
likely to differ between different groups of people. In this case, we may still have
a preference based on statistical sensitivity or on convenience or other factors. For
example, if a measurement (such as serum cholesterol) has a very long right tail,
the mean is hard to estimate reliably. This would be a valid argument against using
a t-test if we had no particular interest in the mean as a summary and no particular
knowledge of how cholesterol varies between groups of people. The median or the
geometric mean might be better summaries, leading to a different test or to a t-test
based on transformed data.

This discussion has been phrased in terms of the t-test, but the same criteria
apply in considering alternatives to linear regression. There are many alternative
regression methods, like the proportional odds model for categorical data or more
robust median regressions for long-tailed data. These quantify the effects of a
predictor variable in different ways. Sometimes it will be possible to identify the
desired method based on the scientific question to be answered. On other occasions
we may know whether the effect is likely to be a small increase in most values
(perhaps favoring a robust regression) or a large increase in a few outliers (which
would be ignored by a robust regression).
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SUMMARY AND CONCLUSIONS

The t-test and least-squares linear regression do not require any assumption of
Normal distribution in sufficiently large samples. Previous simulations studies
show that “sufficiently large” is often under 100, and even for our extremely non-
Normal medical cost data it is less than 500. This means that in public health
research, where samples are often substantially larger than this, the t-test and the
linear model are useful default tools for analyzing differences and trends in many
types of data, not just those with Normal distributions. Formal statistical tests
for Normality are especially undesirable as they will have low power in the small
samples where the distribution matters and high power only in large samples where
the distribution is unimportant.

While the large-sample properties of linear regression are well understood, there
has been little research into the sample sizes needed for the Normality assumption
to be unimportant. In particular, it is not clear how the necessary sample size
depends on the number of predictors in the model.

The focus on Normal distributions can distract from the real assumptions of
these methods. Linear regression does assume that the variance of the outcome
variable is approximately constant, but the primary restriction on both methods is
that they assume that it is sufficient to examine changes in the mean of the outcome
variable. If some other summary of the distribution is of greater interest, then the
t-test and linear regression may not be appropriate.

APPENDIX 1

The Central Limit Theorem

The classical version of the Central Limit Theorem taught in introductory statistics
courses deals with averages of identically distributed data. This suffices for the
t-test but not for linear regression, where the regression coefficients are computed
from averages of the outcome multiplied by the covariates. To cover both cases we
use the Lindeberg-Feller Central Limit Theorem (6). An approximate translation
of this result is that ifYy, Y», ... Y, are a large collection of independent random
variables with variances;, sz, . . ., s? the average

_ 1 n
Y:—ZYi
r]izl

is approximately Normally distributed, with mean equal to the average of the
means of thers and variance equal to the average of their variances, under two
conditions:

1. The variance of any single observation is small compared to the sum of the
variances.

2. The number of outcomes that are extreme outliers, moreffmastandard
deviations away from their mean, is small.
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These conditions both restrict the impact any single observation can have on the
average. Extreme outliers and very unequal variances (such as might be caused by
outlying covariate values in linear regression) are allowed, but imply that larger
sample sizes are needed.

This result does not answer the perennial question “How large is large?,” and
theoretical results are not particularly helpful. In order to understand how the
required sample size varies for different sorts of data, we need to rely on simulations
that reflect the sort of data we typically use. We do know that the important features
of such a simulation are how the sample size relates to the differences in variance
and the prevalence of extreme outliers; this information will help us generalize
from the simulations to other sorts of data.

The t-Statistic

LetY; andY be the mean of in groups 1 and 2 respectively. By the Central Limit
Theorem, ifn; andn, are large enoughfy ~ N (i1, 02) andYz ~ N(uz, 02/ny),
so

2 2
- — o log
Y1—Y2NN<M1—M2,—1+—2)

ny no

and thus

Y-V
A2 N - 2, 1)
£+

Now in a large samples?ands3 are close tar? ando2, so we may replace the
population variance by the sample variance to arrive at the unequal-variance form
of the t-statistic.

Linear Regression

The parameter estimates in least-squares linear regression are given by the matrix
formula

B=(XTX)tXTY

This formula shows that each coefficient is a weighted average of traues
with weights that depend in a complicated way on the covariétdhat is, we
can write each coefficient as

~ 18
Bi==Y wY.
ni=

This is an average of variablasgY; that have different distributions depending on
X, but the Central Limit Theorem still applies. In this case extreme valu¥of
of X will increase the required sample size.
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