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Fall 2013 Biostat 511 0

(Biostatistics 511)

Instructor:

David Yanez

Cartoons and images in these notes are  from 
Gonick L. Cartoon Guide to Statistics. HarperPerennial, New York, 1993.
Fisher L and vanBelle G. Biostatistics: A Methodology for the Health Sciences. Wiley, New York, 1993
Special thanks to past 511 instructors, James Hughes, and Lurdes Inoue for crafting these lecture slides.
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Lecture Outline

• Course Structure

• Overview

- Scientific method

- Classical Introduction
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Course Structure

• Instructors: David Yanez, Ph.D.

• TAs:
- Lisa Brown - Phillip Keung
- Michael Garcia - Sandrine Moutou

• Time and Place:
- Lectures: 9:30 – 10:20 am MWF HSB T-625
- Discussion Sessions:

- 12:30-1:20 pm M HSB T-473 (AE)
- 8:30-9:20 am W HSB K-439 (AB)
- 8:30-9:20 am W HSB T-747 (AD)
- 9:30-10:20 am Th HSB T-747 (AC)
- 8:30-9:20 am F HSB T-473 (AA)
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Assumed Prior Knowledge

• Statistical coursework

• None

• Mathematical coursework

• High school algebra
• Math pre-test and solutions: See course webpage
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Lectures

• Recording of lectures: Camtasia

• Audio and computer video on course webpage
• Posted approximately the evening after the lecture

• Technologic and human errors happen

• Please attend the lectures!
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Textbook

• Baldi and Moore (2012, 2nd ed.): The Practice of Statistics in the Life Sciences

• Classical organization
• (Lectures organization will follow relatively closely)
• Used primarily as a reference
• Great for working additional practice problems/exercises
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Computer Software

• Used extensively for data analysis

• Students may use any program that will do what is required (Stata, SPSS, SAS, 
R, Excel, etc.), however

• The course TA’s are well versed in Stata
• Stata is used heavily in Biost 512-513, 536, 537, 540
• Computer labs/exercises will be performed in Stata
• Stata commands will be provided for homeworks and lecture examples
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Stata

• Extremely flexible statistical package 
• Interactive
• Excellent compliment of biostatistical methods

• Graphics and output are reasonable (or not unreasonable)
• Available in the microcomputer lab (HS Library)
• Plenty of supplemental information available online

• Can be obtained at a decent discount through the UW (gradplan)
• See the course webpage under the “Data & Stata” link
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Homework Assignments

• Weekly homework assignments: conceptual problems, analysis of real data

• Handed out Mondays (generally) and due the following Monday (generally) by 
9:30 am

• To be handed in online at the Canvas system at: https://canvas.uw.edu/
The homework “DropBox” link is also provided on the course webpage, 
http:courses.washington.edu/b511/

• If you hand the homework in on time and make a good faith effort on each 
question, you will receive credit for the assignment

• Approximately 8-9 homework assignments. Students are required to 
complete all but one to receive full credit for their homework grade
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Discussion Section

• Supplements lectures, forum for discussion of course topics/materials, question 
and answer, assistance with data analysis and statistical computing.

• Participation is strongly encouraged to required.

• Holidays (Veterans Day, Thanksgiving) – affected discussion sections should 
plan to sit in other discussion sections.

• First week’s discussion sections will be held in the HS Library computer lab (3rd

floor T-wing entrance). Please make it a habit to bring a PIN drive to these 
sessions to save files and data.
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Grading

• Homework (8-9 assignments): 20%
• Exams (3 exams, use best 2): 45%
• Final Exam (2 hours, Dec. 11): 35%

• Assignments 
• Encouraged you to work together, but

please hand-in work that is solely your own.

• Exams
• Closed note, closed book, no electronic devices except for a basic 

hand calculator. One hand-written crib sheet allowed. More later.
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Course Web Pages

• Address: http://courses.washington.edu/b511/

• Content:

• Syllabus, Course Schedule/Outline
• Class Lecture Notes (full size, four per page)
• Recorded Lectures
• Homework Assignments (and solutions)
• Homework DropBox
• Datasets and Stata information
• Miscellaneous Handouts
• Discussion Board
• Current Announcements
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Office Hours

• Biost 511 students

• Biost 511 instructors and TA’s really like to see you during office hours.

• Use of office hours (or lack thereof) may impact assignments and exams…

Fall 2013 Biostat 511 13

What is Statistics?
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GvB …

1. What is the question?

2. Is it measurable?

3. Where/how will you get the data?

4. What do you think the data are telling you?

“Statistics is … inference … data … variation… 
uncertainty”

What is Statistics?
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What is the Question?

During WWII the British Air Force wanted to know what 
areas of it’s fighter planes it should reinforce to prevent them 
from being shot down.

Is it Measureable?

Example – WWII Planes
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Damaged Spitfire
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•Vulnerability analysis of 400 Spitfires (15/400 shown)

The “Data”
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• Specifically, where do you put the extra armor?

• Abraham Wald was a statistician charged with analyzing these data …

What do the data say?
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1. Conclusions should be based on data

2. All data have limitations

3. Variability is omnipresent

4. “All models are wrong but some are useful” (George Box)

Development of “Statistical Thinking” is as important as 
learning particular statistical methods.

Statistical Thinking
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Scientific Method

Make 
decisions

Analyze
Data

Design
Study

Formulate 
Theories

Collect 
Data
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• Almost always, our data are incomplete …

• the data typically represent a sample from some larger 
population that we are really interested in

• the data may not fully represent the population of interest

• Language and concepts associated with producing data

• Random samples, convenience samples

• Parameters and statistics

• Observational vs experimental studies

• Bias, variability, confounding

Producing Data
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• Organization, summarization, and presentation of data

• “Exploratory data analysis is detective work - numerical detective 
work” – John Tukey

• Useful for generating hypotheses, finding unexpected patterns, 
forming new ideas (inductive reasoning)

Tools:

• tables

• graphs

• numerical summaries

Descriptive Statistics (EDA)
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• Assess strength of evidence in data for/against a preconceived 
hypothesis (deductive reasoning)

• Make comparisons

• Make predictions

• Generalize findings from a sample to a larger population

• Powerful methods, but sensitive to assumptions

Tools:

• Models

• Estimation and Confidence Intervals

• Hypothesis Testing

Inferential Statistics
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Descriptive Statistics and EDA

• Types of data
1. Categorical
2. Continuous

• Numerical Summaries
1. Location - mean, median, mode.
2. Spread - range, variance, standard deviation, IQR
3. Shape - skewness

• Graphical Summaries
1. Barplot
2. Stem and Leaf plot
3. Histogram
4. Boxplot

• Mathematical Summaries
1. Density curves

Univariate Statistics
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• Identify missing data, errors in measurement, other data 
collection problems

• Assess validity of assumptions needed for formal (inferential) 
analyses

• Understand basic aspects of the data

• Details of the “distribution” of each variable

• Sizes of subgroups

• Relationships between key variables

Purpose of Descriptive Analysis
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• Categorical (qualitative)
1) Nominal scale - no natural order

- gender, marital status, race
2) Ordinal scale

- severity scale, good/better/best

• Numerical (quantitative)
1) Discrete - (few) integer values

- number of children in a family
2) Continuous - measure to arbitrary precision; sometimes “censored”

- blood pressure, weight, time to event

Why bother?  PROPER DISPLAYS, PROPER ANALYSIS

Data - measurements or observations on “units of observation”

Types of Data
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Sometimes, a continuous variable may only be known to be greater than (or 
less than) a given amount. Such measures are said to be “censored”

• Right censored – it is only known that the true value is greater than some fixed 
number.

• E.g. time to death following bypass surgery, but some people remain alive 
at the time of analysis.

• Left censored - it is only known that the true value is less than some fixed 
number.

• E.g. amount of selenium in a soil sample is below the detection limit of 
the machine

 Often, standard methods must be modified when for censored data

 “Survival analysis”, “failure time analysis”, “time to event” are terms you will 
hear … see Biostat 513

Censored Data
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Summarize categorical data with counts e.g. table or bar graph

Notes:

• vertical axis can be count or percent

• in the above example, counts do not add to 74 … individuals can have 
multiple risk factors

• Presentation – use bar graph; paper – use table

Risk factor for HIV

0

20

40

60

80
 Count

Gay Heter IVDU Occup

N = 74

Categorical Data
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• Barplot doesn’t make sense for continuous data e.g. age

• We are more interested in the distribution of age:

•where is the center of the age distribution (e.g. the average)?

•how much does age vary?

•are there some values far from the bulk of the data?

What are some visual and numeric tools to help us answer these 
questions? 

Consider the 11 ages:

21,32,34,34,42,44,46,48,52,56,64

Continuous Data
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We could group the data and tally the frequencies:

But why hide the details? Instead, we’ll use the 10’s place as 
“stems” and the units as “leaves”:

20: X
30: XXX
40: XXXX
50: XX
60: X

2* | 1
3* | 244
4* | 2468
5* | 26
6* | 4

The stemplot or stem and leaf plot is a quick, informative 
summary for small datasets.

Stem and Leaf Diagram
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• All but the last digit form the stem.

• Stems are stacked vertically from the smallest to the largest.

• The leaf is the last digit in a value and is placed next to the 
appropriate stem (out from smallest to largest)

• Shows macro information - general shape, spread, range.

• Shows micro information - all values shown.

• Fast and easy to construct.

• Subjective decisions – rounding, splitting stems

• STATA – stem age 

• (even better, download the gr0028 package and use 
stemplot)

Stem and Leaf Diagram, construction
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9*
10*
10*
11*
11*
12*
12*
13*
13*

To compare two sets of data, use a back-to-back stem and leaf 
diagram. Note, also, that we have “split” the stems.

2
77
0122

3
9

6

8
2
9

4220
97

3

0

Fig 1. Systolic blood pressure after 12 weeks treatment with daily 
calcium supplement or placebo

CalciumPlacebo

Stem and Leaf - variations
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The stem and leaf effectively groups continuous data into 
intervals. Let’s extend this idea. The following terms are 
useful for grouped data:

• frequency - the number of times the value occurs in the data.

• cumulative frequency - the number of observations that are 
equal to or smaller than the value.

• relative frequency - the % of the time that the value occurs 
(frequency/N).

• cumulative relative frequency - the % of the sample that is 
equal to or smaller than the value (cumulative frequency/N).

Methods for Grouped Data
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Sample of 100 birthweights in ounces. Complete the 
following table ...

Interval Midpt Freq. Cum. 
Freq. 

Rel. 
Freq. 

Cum. Rel. 
Freq. 

29.5 < W < 69.5 49.5 5
69.5 < W < 89.5 79.5 10
89.5 < W < 99.5 94.5 11
99.5 < W < 109.5 104.5 19
109.5 < W < 119.5 114.5 17
119.5 < W < 129.5 124.5 20
129.5 < W < 139.5 134.5 12
139.5 < W < 169.5 154.5 6
 

Stata:
gen bwtcat = bwt
recode bwtcat min/69=1 69/89=2 89/99=3 99/109=4 109/119=5 119/129=6 
129/139=7 139/max=8
tabulate bwtcat

Example - Birthweights
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• Similar to a barplot, but used for continuous data.

• Divide the data into intervals.

• A rectangle is constructed with the base being the interval 
end-points and the height chosen so the area of the rectangle 
is proportional to the frequency (if the width is one unit for 
all intervals, then  height  frequency).

• Shape can be sensitive to number and choice of intervals 
(rule of thumb: number of bins is smaller of         or 
10*log10n)

• Histograms are more effective for moderate to large datasets.

n

Histograms
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Right:

Wrong:

Note: You can determine relative frequency (= height*width) and 
cumulative relative frequency from a histogram.

Example - Birthweights
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Shape

number of modes (peaks)

symmetry

Center

where is the center?

Spread

how much variation?

outliers?

Other features

boundaries

digit preference



Characteristics of Distributions
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Var
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Example Distributions
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Suppose we have N measurements of a particular variable. We will 
denote these N measurements as:

X1, X2, X3,…,XN

where X1 is the first measurement, X2 is the second, etc.

Sometimes it is useful to order the measurements. We denote the 
ordered measurements as:

X(1), X(2), X(3),…,X(N)

where X(1) is the smallest value and X(N) is the largest.

Notation
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The arithmetic mean is the most common measure of the 
central location of a sample. We use       to refer to the 
mean and define it as:

X




N

1i
iX

N

1
X

The symbol  is shorthand for “sum” over a specified 
range. For example:

)XXX(XX
4

1i
4321i




Arithmetic Mean
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Often we wish to transform variables. Linear changes to 
variables (i.e. Y = a*X+b) impact the mean in a predictable 
way:

(1) Adding (or subtracting) a constant to all values:

(2) Multiplication (or division) by a constant:



Y

cXY ii




Y

cXY ii

Does this nice behavior happen for any change? NO! (show 
that                       ) XX loglog 

Example: Convert mean 25ºC to ºF

Some Properties of the Mean
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Another measure of central tendency is the median - the 
“middle one”. Half the values are below the median and half 
are above. Given the ordered sample, X(i), the median is:

N odd:

N even:

Mode

The mode is the most frequently occurring value in the 
sample.

1

2

Median NX  
 
 



   12 2

1
Median

2 N NX X


   
 

Median
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Suppose the ages in years of the first 10 subjects enrolled in your study 
are:

34,24,56,52,21,44,64,34,42,46

Mean :

Median: 
order the data:  21,24,34,34,42,44,46,52,56,64

 
years43

4442
2

1

2

1
Median

1
2

10
2

10























 






 XX

Mode: 34 years.

X (34 24 56 52 21 44 64 34 42 46) /10

417 /10

41.7 years

         



Example: Central Location
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Suppose the next patient enrolls and their age is 97 years.

How do the mean and median change?

To get the median, order the data:

21,24,34,34,42,44,46,52,56,64,97

If the new age was recorded incorrectly as 977, instead of 97, 
what would the new median be? What would the new mean be?

X (34 24 56 52 21 44 64 34 42 46 97) /11

514 /11

46.7 years

          



 6Median

44 years

X



Example (cont.)
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• Mean is sensitive to a few very large (or small) values -
“outliers”

• Median is “resistant” to outliers

• Mean is attractive mathematically

• 50% of sample is above the median, 50% of sample is 
below the median.

• Note that a proportion is simply a mean of 0/1 data 
(e.g. 0 = no disease; 1 = disease)

Comparisons: Mean and Median
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Variation is important!
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• Types of data
1. Categorical
2. Continuous

• Numerical Summaries
1. Location - mean, median, mode.
2. Spread - range, variance, standard deviation, IQR
3. Shape - skewness

• Graphical Summaries
1. Barplot
2. Stem and Leaf plot
3. Histogram
4. Boxplot

• Mathematical Summaries
1. Density curves

Descriptive Statistics and Exploratory
Data analysis - Univariate
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• Barplot doesn’t make sense for continuous data e.g. age. 

• We are more interested in the distribution of age:

•where is the center of the age distribution (e.g. the average)?

•how much does age vary?

•are there some values far from the bulk of the data?

• What are some visual and numeric tools to help us answer 
these questions? 

Consider the 11 ages:

21,32,34,34,42,44,46,48,52,56,64

Continuous Data
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The range is the difference between the largest and 
smallest observations:

   1=

Minimum-Maximum=Range

XX N 

Alternatively, the range may be denoted as the pair of 
observations (more useful for quality control):

 
    

R a n g e = M i n i m u m , M a x i m u m

= X X N1 ,

Disadvantage: the range typically increases with increasing 
sample size – hard to compare ranges from samples of 
different size

In the ages example, for the first 10 subjects, the range is

R a n g e = 6 4 - 2 1 = 4 3

o r ( 2 1 , 6 4 )

Measures of Spread: Range
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Consider the following two samples:

20,23,34,26,30,22,40,38,37

30,29,30,31,32,30,28,30,30

These samples have the same mean and median, but the second is 
much less variable. The average “distance” from the center is quite 
small in the second. We use the variance to describe this feature:

 2
2

1

22

1

1
s

1

1

1

N

i
i

N

i
i

X X
N

X N X
N





 


 
    





The standard deviation is simply the square root of the 
variance:

2s ta n d a rd  d e v ia t io n  =  s  =  s

Measures of Spread: Variance
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For the first sample, we obtain:

For the second sample, we obtain:

2* | 023
2. | 6 var = 59.25 yr2

3* | 04 sd = 7.7 yr
3. | 78
4* | 0

2* |
2. | 89 var = 1.25 yr2

3* | 0000012 sd = 1.1 yr
3. | 
4* |

Measures of Spread: Variance
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• Variance and standard deviation are ALWAYS greater than or 
equal to zero.

• Linear changes are a little trickier than they were for the mean:

(1) Add/substract a constant: Yi=Xi+c

(2) Multiply/divide by a constant: Yi=c  Xi

• So what happens to the standard deviation?

2 2
Y XS =S

2 2 2
Y XS =c S

Example: Variance in ºC is 25 degrees2; what is variance in ºF?

Properties of the variance and
standard deviation
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Quartiles are the (25,50,75) percentiles. The interquartile range (IQR) is 
Q.75 - Q.25 and is another useful measure of spread. The middle 50% of the 
data is found between Q.25 and Q.75.

Q.25 – median of the observations to the left (less than) the overall median.

Q.75 – median of the observations to the left (less than) the overall median.

20,22,23,26,30,34,37,38,40

. centile age, centile(25 50 75)

-- Binom. Interp. --
Variable |     Obs Percentile      Centile [95% Conf. Interval]

-------------+-------------------------------------------------------------
age |       9         25          22.5              20    32.45832*

|                 50            30        22.07778    37.92222
|                 75          37.5        27.54168          40*

Measures of Spread:
Quantiles & Percentiles
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To find the p’th percentile, let k = p*N/100.

(1) If k is an integer, pth percentile is the average of X(k) and 
X(k+1).

(2) If k is not an integer, pth percentile is X([k]+1).

[k] is the largest integer smaller than k (i.e. truncate the decimal).

Note: may not always agree with Stata result

More generally, define the p’th percentile as the value which has p% of 
the sample values less than or equal to it.

Measures of Spread:
Quantiles & Percentiles
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A graphical display of the quartiles of a dataset, as well as the 
range. Extremely large or small values are also identified.

Gender
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V
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)

f em a le m a le

. graph box fev, over(sex)

Boxplot
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median

1
2

3
4

5
6

F
E

V
 (l

ite
rs

)

25th percentile

75th percentile } IQR

“outliers” – more than 
1.5*IQR above the quartile

Define an outlier as any observation more than 1.5*IQR  above/below 
the quartile 

The “whiskers” extend to the smallest/largest non-outlying observations.

1.5*IQR

smallest obs.

Boxplot: Construction
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Boxplot: variations
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Both histograms and boxplots can show us that a distribution is 
skewed. Skewness refers to the symmetry or lack of symmetry in 
the shape of the distribution. Neither the mean nor the variance tell 
us about symmetry. 

1. “symmetric”; 
median = mean

2.  “positive” or “right” skewed; 
median<mean

3. “negative” or “left” skewed; 
median>mean

Skewness

Fall 2013 Biostat 511 59

We have seen how continuous data can be summarized with a 
histogram. Although histograms are summaries of the data, they 
still involve keeping track of a lot of numbers (i.e. the height and 
location of each bar). Also, histograms tend to be pretty jagged 
unless the dataset is reasonably large. 

Q: Is there a way to smooth out the histogram and perhaps 
summarize the entire distribution of data with just a few 
numbers?

A: YES!  We can use a type of mathematical model known as a 
density curve.

Density Curves
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Density Curves
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We saw previously that we can use a histogram to 
determine the relative frequency (= proportion = 
probability) of obtaining observations in a particular 
interval. 

If a particular density curve provides a good fit to our 
data then we can use the density curve to approximate 
these probabilities. In particular, the probability of 
obtaining an observation in a particular interval is given 
by the area under the density curve.

Note: For continuous data, it does not make sense to talk 
about the probability of an individual value (i.e. P(X = 6) 
 0.0)

Density Curves
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Relative 
frequency of 
scores less than 6 
from histogram = 
.303

Probability of scores 
less than 6 from 
density curve = .293
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1. A function, typically denoted f(x), that gives 
probabilities based on the area under the curve.

2. f(x) > 0

3. Total area under the function f(x) is 1.0. ( ) 1 . 0f x d x 

Cumulative Distribution Function (CDF)

The cumulative distribution function, F(t), tells us the total 
probability less than some value t.

F(t) = P(X < t)

This is analogous to the cumulative relative frequency.

Probability Density Function (PDF)
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Examples

The area under the curve on the PDF (left figure) represents the 
probability of being less than 82 lbs. In this example, the probability 
is approximately 0.5. This value corresponds to the probability of 
weighing less than 82 lbs. on the CDF (right figure) .
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Gauss’ Normal Distribution
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• A common model for continuous data

• Bell-shaped curve

 takes values between - and + 

 unimodal, symmetric about mean

 mean=median=mode

• Examples

birthweights

blood pressure

CD4 cell counts (perhaps transformed)

Normal Distribution
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Specifying the mean and variance of a normal distribution 
completely determines the probability distribution function and, 
therefore, all probabilities (just 2 numbers!).

The normal probability density function is:

where   3.14 (a constant)

Notice that the normal distribution has two parameters:

 = the mean of X

 = the standard deviation of X

We write X ~ N( , 2).  The standard normal distribution is a 
special case where  = 0 and  = 1.

2

2

1 1 ( )
( ) exp

22

x
f x


 

 
  

 

Normal Distribution
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Examples
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In general,

~68% of data within 1 of 

~95% of data within 2 of 

~99.7% of data within 3 of 

Standard Normal Distn
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• Types of data
1. Categorical
2. Continuous

• Numerical Summaries
1. Location - mean, median, mode.
2. Spread - range, variance, standard deviation, IQR
3. Shape - skewness

• Graphical Summaries
1. Barplot 
2. Stem and Leaf plot
3. Histogram
4. Boxplot

• Mathematical Summaries
1. Density curves

Summary
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• Quantitative Data

1. Scatterplots

2. Starplot

3. Correlation/Regression

• Qualitative Data

4. Two-way (contingency) tables

• Effect modification

Descriptive Statistics and Exploratory Data 
Analysis – Bivariate/Multivariate
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• Identify missing data, errors in measurement, other data 
collection problems

• Assess validity of assumptions needed for formal (inferential) 
analyses

• Understand basic aspects of the data

• Details of the “distribution” of each variable within 
subgroups

• Relationships between key variables – associations, 
effect modification

Purpose of descriptive analysis
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A scatterplot offers a convenient way of visualizing the relationship 
between pairs of quantitative variables.

Many interesting features can be seen in a scatterplot including the 
overall pattern (e.g., linear, nonlinear, periodic), strength and direction 
of the relationship, and outliers.
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Scatterplots
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y

x
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Scatterplot showing nonlinear relationship

Examples
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s
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Scatterplot showing daily rainfall amount (mm) at nearby 
stations in SW Australia. Note outliers (O). Are they data errors 
… or interesting science?!

O

O O

Examples
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Presentation matters!
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- Important information can be seen in two dimensions that isn’t 
obvious in one dimension
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12000

14000

One or two dimensions?
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Use symbols or colors to add a third variable

M

F

F
F

F

M

F

F

M

F

F

M

F

F

F

F

M

M

10
00

12
00

14
00

16
00

18
00

M
et

ab
ol

ic
 R

at
e 

(C
al

)

3 0 4 0 5 0 6 0 7 0
M a ss (kg )

Adding dimensions…
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• Each ray corresponds to a variable

• Rays scaled from smallest to largest value in dataset

 Price

 Mileage (mpg)

Repair Record 19

 Headroom (in.)

 Weight (lbs.)

 Turn Circle (ft.) 

Displacement (cu

 Gear Ratio

Concord Pacer Century

Electra LeSabre Regal

Riviera Skylark Deville

Star plots are used to display multivariate data

Plotting Multivariate Data
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How can we summarize the “strength of association” between two 
variables in a scatterplot?

T
h
ig

h
 c

ir
c
u
m

fe
re

n
c
e
 (

c
m

Knee circumference (cm)
30 35 40 45 50

40

60

80

100

Correlation
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The correlation between two variables X and Y is:

Properties:

• No distinction between x and y.

• The correlation is constrained:  -1  R  +1

• | R | = 1 means “perfect linear association”

• The correlation is a scale free measure (correlation doesn’t change 
if there is a linear change in units).

• Pearson’s correlation only measures strength of linear relationship.

• Pearson’s correlation is sensitive to outliers.

1

1

1

N
i i

i X Y

X X Y Y
R

N s s

   
      



Pearson’s Correlation Coefficient
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Perfect positive 
correlation (R = 1)

Perfect negative 
correlation (R = -1)

Uncorrelated (R = 0) 
but dependent

Examples
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More examples
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Y

X1
-4 -2 0 2

-5

0

5

10
r = .88

Now restrict the range of X …

Y

X1
.5 1 1.5 2

2

4

6

r = .51

E.g. relationship between LSAT and GPA among law school students

Plot of all data …

Correlation is attenuated if you restrict the range of X or Y …

Correlation Pitfalls
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Careful about interpreting correlation causally …

r = .79

• There is an association between doctors/person and life expectancy.

• Can we increase life expectancy by providing more doctors?

Correlation Pitfalls
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… or maybe we just sell more TV’s?

Correlation Pitfalls
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The correlation coefficient was used to summarize the strength 
of the relationship between interchangeable X and Y. 

Sometimes, however, X and Y are not interchangeable. We 
may want to predict Y from X. What is a reasonable approach?

Linear Regression
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We could use the mean (or median) value of Y for whatever X 
we are interested in ...

But we would like something simpler (fewer numbers to keep 
track of) ...

… that will allow us to predict Y at X0...

… and make “fuller” use of the data.

X1 X2 X3 X4X0

Y| 1X

Linear Regression
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• If a scatterplot suggests a linear relationship between X and Y we can 
draw a linear regression line to describe how the mean of Y changes
differs when X changes differs or to predict the mean of Y for any 
given value of X:

Y = a + bX

• In linear regression one variable (X) is used to predict or explain 
another (Y) (the situation is asymmetric).

• X  independent, predictor   Y dependent, response

• X and Y are both quantitative

• This is an example of a mathematical model

Linear Regression
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Straight line relationship

Y = a + bX

a = intercept = value of mean of Y when X = 0

b = slope = expected change difference in the mean of Y for each 1 unit 
change difference in X

X

Y

a

b

0

Model Assumptions
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What is the interpretation of b, the slope in the regression 
equation?

b describes the expected change difference in Y (change
difference in the mean value of Y) for each 1 unit difference 
in X.
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Y = -39.28 + .6312 X

For each 1 cm increase difference in abdominal circumference, the 
mean percent body fat is increases by 0.6312 points higher.

Regression Slope
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Examples
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The method of Least Squares dates to at least Legendre (1805). We 
collect pairs of observations (Xi, Yi)  for  i = 1, 2,…, n; and choose a 
line, (a,b) where the total difference between the data and the fitted line 
is minimal - in the sense that the sum of squared differences between 
the observed and the fitted is minimized:

• Find the values (a, b) that make S as small as possible.  

  
2

1
 


n

i
ii bXaYS

(Y5-[a+bX5])

Fitting Regression Lines
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To obtain the minimum / maximum of a function we find the values 
that make the derivatives equal to zero.  So to find (a, b) that 
minimizes S we solve the “normal equations”:

Solving these equations yields the estimates:

  

   02

02

1

1
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Fitting Regression Lines
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Y = -39.28 + .6312 X

Note: line is only drawn within the 
range of the observed data.

Leverage 
point

Example
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Given the estimates (a, b) we can find the predicted value,     ,  for 
any value of X.

The interpretation of       is as the estimated mean value of Y for a 
large sample of values taken at X. 
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Predicted body fat when abdominal circumference is 90 cm
= -39.28 + .6312*90 = 17.53 percent

= -39.28 + .6312 XŶ

Ŷ

Ŷ

Xb̂ â  Ŷ 

Regression – Predicted Values
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The least squares slope, b, and the correlation coefficient, r, are 
closely connected:

• From this we see that slope = correlation  scale change

• Unlike correlation, reducing the range or spread of x values (i.e.
smaller sx) does not (systematically) attenuate b (because r
decreases as well)

x

y

s

s
b r

Regression and Correlation
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“With great power comes great responsibility” - Spiderman

A computer program can always fit a linear regression model! That 
doesn’t mean that the predictions or conclusions you draw from 
the model always make sense. Beware of

• Nonlinearity
• Outliers and leverage points
• Extrapolating outside the range of the data
• Mistaking association for causation (recall the life 

expectancy vs TVs example; more on this in a bit)

Regression Pitfalls
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Predicted values assume the model is true. Presumably, we have 
checked that this is a reasonable assumption where we have data. 
It may not be true outside the range of our data!!

One disastrous example of extrapolation outside the range of the 
existing data was the decision to launch the space shuttle 
Challenger in 31 degree temperatures. Prior to that the coldest 
launch temperature was 53 degrees. Poor graphical presentation of 
data also played a role in this decision.

Caution

Regression Pitfalls
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Challenger 
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Challenger
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Scatterplots provide a compact display of the relationship 
between two quantitative measures.

Colors or symbols can be used to add a third (categorical) 
dimension to a scatterplot.

Starplots can be used to display multivariate data.

The correlation coefficient summarizes the strength of the 
linear (Pearson’s) or monotonic (Spearman’s) relationship 
between two quantitative measures. 

A linear regression line is a model summarizing how the mean 
value of one quantitative measure (Y) varies with another 
quantitative measure (X). A linear regression line can be used to 
predict Y from X. The slope of the regression line gives the 
expected change difference in Y for each 1 unit change
difference in X.

Summary
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• Quantitative Data
1. Scatterplots
2. Starplot
3. Correlation
4. Regression

• Qualitative Data
5. Two-way (contingency) tables

• Effect modification

Descriptive Statistics and Exploratory Data 
Analysis – Bivariate/Multivariate
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Quantitative measures - correlation

Qualitative (categorical, discrete) measures – two-way tables

• Nominal or ordinal categories

• Cross-classify the observations according to the two factors

• Two-way table = contingency table.

• Measures of association

Two-way (contingency) Tables
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Example. Education versus willingness to participate in a study of a 
vaccine to prevent HIV infection if the study was to start tomorrow. 
Counts, percents and row and column totals are given.

definitely
not

probably
not

Probably definitely Total

< high
school

52
1.1%

79
1.6%

342
7.0%

226
4.6%

699

high school 62
1.3%

153
3.2%

417
8.6%

262
5.4%

894

some
college

53
1.1%

213
4.4%

629
13.0%

375
7.7%

1270

college 54
1.1%

231
4.8%

571
11.8%

244
5.0%

1100

some post
college

18
0.4%

46
0.9%

139
2.9%

74
1.5%

277

graduate/
prof

25
0.5%

139
2.9%

330
6.8%

116
2.4%

610

Total 264 861 2428 1297 4850

The table displays the joint distribution of education and 
willingness to participate.

Two-way Tables
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The marginal distributions of a two-way table are simply the 
distributions of each measure summed over the other.

E.g. Willingness to participate

Definitely
not

Probably
not

Probably Definitely

264 861 2428 1297
5.4% 17.8% 50.1% 26.7%

Willing

0

1000

2000

3000
 count

Def not Prob not Prob Def

Two-way Tables
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A conditional distribution is the distribution of one measure 
conditional on (given the) value of the other measure.

E.g. Willingness to participate among those with a college 
education.

Definitely
not

Probably
not

Probably Definitely

54 231 571 244
4.9% 21.0% 51.9% 22.2%

Two-way Tables



55

Fall 2013 Biostat 511 108

definitely
not

probably
not

probably definitely Total

< high school 52 79 342 226 699
high school 62 153 417 262 894
some college 53 213 629 375 1270
college 54 231 571 244 1100
some post
college

18 46 139 74 277

graduate/
prof

25 139 330 116 610

Total 264 861 2428 1297 4850

What proportion of individuals …

• will definitely participate?
• have less than college education?
• will probably or definitely participate given less than college 

education?
• who will probably or definitely participate have less than college 

education?
• have a graduate/prof degree and will definitely not participate?

Two-way Tables
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Q: Is there an analogue to the correlation coefficient for 
quantifying association in two-way tables?

A: Yes. In fact, there are several. At this point we will only discuss 
two summary measures for 2 x 2 tables – the relative risk and the 
risk difference.

Two-way Tables
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Example:  Pauling (1971)

Patients are randomized to either receive Vitamin C or placebo.  
Patients are followed-up to ascertain the development of a cold.

How can we summarize the association between treatment and 
disease?

 Cold - Y Cold - N Total
Vitamin C 17 122 139 

Placebo 31 109 140 

Total 48 231 279 
 

 

2x2 Tables
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Two measures are commonly used:

1) Relative Risk = 

RR < 1 – treatment associated with reduced risk of disease
RR = 1 – no association
RR > 1 – treatment associated with increased risk of disease

2) Risk Difference = Risk among treated – Risk among placebo
RD < 0 – treatment associated with reduced risk of disease
RD = 0 – no association
RD > 0 – treatment associated with increased risk of disease

Risk of disease among treated

Risk of disease among placebo

See article “Relative Risk vs Absolute Risk – Vastly Different”

2x2 Tables
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|   Exposed   Unexposed  |      Total
-----------------+------------------------+------------

Cases |        17          31  |         48
Noncases |       122         109  |        231

-----------------+------------------------+------------
Total |       139         140  |        279

|                        |
Risk |  .1223022    .2214286  |    .172043

|                        |
|      Point estimate    |    [95% Conf. Interval]
|------------------------+------------------------

Risk difference |        -.0991264       |   -.1868592   -.0113937 
Risk ratio |         .5523323       |    .3209178    .9506203 

Prev. frac. ex. |         .4476677       |    .0493797    .6790822 
Prev. frac. pop |         .2230316       |

+-------------------------------------------------
chi2(1) =     4.81  Pr>chi2 = 0.0283

Note: RR and RD are appropriate when we sample exposure groups 
and measure disease; RR and RD should not be used when we sample 
disease groups and measure exposure (i.e. case-control study).

2x2 Tables – Prospective Study
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RR, RD, correlation and regression are all examples of measures of 
association between two variables. Complications in interpretation 
can arise when we involve a third variable.

Interaction, also known as effect modification in the epidemiology 
literature occurs when the degree of association between the two 
primary variables (A and B) depends on value of a third variable (C).

A B

C

Interaction (Effect Modification)
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Interaction (Effect Modification)
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 Impact Speed 
 < 40 mph > 40 mph 
Driver seat belt 

worn           not 
seat belt 

worn          not 
dead 2 3 7 18 
alive 18 27 13 12 

Total 20 30 20 30 
Fatality 
Rate 

10% 10% 35% 60% 

 

Seat Belt
Driver Worn Not worn

Dead 9 21
Alive 31 39

Total 40 60
Fatality Rate 22.5% 35%

 the effect of seat belt use on fatality rate depends on impact speed

 in general, the effect of A on B differs by levels of C; pooled 
table is intermediate
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• The concept of effect modification applies to any measure of 
association. Here is an example with correlation. The “o” 
represent one subgroup (correlation = .7); the “+” represent a 
different subgroup (correlation = -.7). Overall correlation  0.

o

o

o

o

o

o o

o

o
o

o

o

o

o o
o

o

o

o

o

2 3 4 5 6 7 8

2
3

4
5

6
7

8

+
+

+

+
+

+

+

+

+
+

+

+

+

++

+

+

+
+

+

Interaction (Effect Modification)
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Contingency tables are used to study association 
between pairs of categorical variables. 

The joint distribution of the two variables as well as 
the marginal distributions of each variable and the 
conditional distribution of one variable for a fixed 
level of the other variable can be obtained from the 
contingency table.

Interaction (effect modification) occurs if a third 
variable influences the association between the two 
variables of interest.

Summary
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• Population vs. Sample

1. Bias

2. Variability

• Study Design

1. Types of studies

a. Descriptive

b. Observational 

c. Experimental 

2. Common Designs

a. Ecologic

b. Cross-sectional

c. Cohort

d. Case-control

e. Randomized trial

• Confounding

Designing Studies
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Population

•set of all “units”

Sample

•a subset of “units”

The objective of inferential statistics is to make valid 
inferences about the population from the sample.

In almost all situations there is an implicit assumption that the 
conclusions we draw from our data apply to some larger group than 
just the individuals we measured.

Parameter

- Numerical value that would 
be calculated using all units in 
the population

Estimates/statistics

- Numerical value that is 
calculated using all units in 
the sample

Populations vs Samples
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Nine percent of the U.S. population has type B blood. In a sample 
of 400 individuals from the U.S. population, 12.5% were found to 
have type B blood.

• In this situation, the value of 9% is a (parameter, statistic).

• In this situation, the value of 12.5% is a (parameter, statistic). 

Population vs Samples
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X X
X

X X
X

X

X

X

XX
X

XX
X

X

X

X1, X2, X3, … Xn

Sample Inference

Observed data

Population

Basic Statistical Paradigm
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• Census

• Random (Probability) Sample

• simple (,stratified, cluster, systematic, multistage)

• sampling frame

• Voluntary sample

• Convenience Sample

• Sampling unit

• Bias

• Sampling variability

Language of Sampling
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• Each unit in the population has a known non-zero chance of being 
included in the sample.

• Suppose our sample size is n. If all samples of size n have an equal 
chance of being drawn, the sample is a simple random sample.

• Probability sampling usually requires a sampling frame - a list of all 
units in the population e.g. census tracts/blocks, class list

• Random samples are very important when estimating absolute 
characteristics of a population e.g. percent who will vote, median 
income, seroprevalence of HBV in IDUs, mean mercury level in tuna

• Random samples are less important in comparative studies  (implicit 
assumption that comparative effect is the same in all units) e.g. efficacy 
of behavioral intervention for reducing HBV infection in IDUs.

• Often, taking a truly random sample is impossible; we hope for a 
“representative” sample.

Random (probability) Sampling
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• In making inferences about the population from a random sample, 
a key concern is sampling variability and its effect on our 
conclusions.

• If I repeat an experiment (draw a new sample), I don’t expect to 
get exactly the same results i.e. mean, incidence rate, relative risk. 
These sample estimates are variable.

• How does that affect our inferences???

The aim of experimental design and statistical analysis is to 
quantify/control/minimize effects of variability and to help us 
understand the effect of sampling variability on our inferences.

Key idea – the 
notion of 
repeated 
sampling

Sampling Variability
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• Quite often, we obtain data from a volunteer or convenience
sample (note: random samples with high refusal rates are 
effectively convenience samples)

• Such samples are almost always subject to some sort of bias

• A sampling method is biased if it produces results that 
systematically differ from the population. Stated differently, do I 
expect that, on average, the estimate from my sample will equal 
the parameter of the population of interest? If so, the procedure is 
unbiased. 

• E.g. Ann Landers survey, Pap smear study

 In general, statistical methods do not correct for bias

Bias
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• Bias can arise for a number of reasons:
– Selection bias – sampling procedure systematically includes or 

excludes a portion of the population
– Non-responses or refusals
– Social desirability/response bias
– Hawthorne effect, etc

A study was conducted to estimate the average length of a prison sentence for prisoners 
at a correctional facility. A random sample of current prisoners was obtained on a 
particular day and they were monitored to the completion of their sentences. The 
information from this sample was used to estimate the average length of a prison 
sentence.

(a) What is the population of interest?

(b) What is the sample?

(c) What is the variable of interest?

(d) Why is the estimate obtained as explained above almost certainly biased? (which 
way?)

Bias
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Examples
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“Obtaining valid results from a test program calls for 
commitment to sound statistical design. In fact, proper 
experimental design is more important than sophisticated 
statistical analysis. Results of a well-planned experiment 
are often evident from simple graphical analyses. However, 
the world’s best statistical analysis cannot rescue a poorly 
planned experiment.”

Gerald Hahn, Encyclopedia of Statistical Science, page 359, entry 
for Design of Experiments

“The plural of anecdote is not evidence”

Dr. Stephen Straus who directs NCCAM 

Study Design
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Most scientific studies can be classified into one of these broad 
categories:

1) Descriptive Studies

Case reports, anecdotal evidence - typically arise 
serendipitously rather than as a result of a planned study.

2) Experimental Studies

The investigator deliberately sets one (or more) factors of 
interest to a specific level.

3) Observational Studies

The investigator collects data from an existing situation and 
does not (intentionally) interfere with the running of the system.

Study Types
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 Describe characteristics (case report/case series/anecdotes)

 First description of the disease or phenomenon

 Weak study design - cannot make causal inference

 First step to better-designed study

• Between October 1980-May 1981, 5 young men were treated for 
biopsy-confirmed Pneumocystis carinii pneumonia (PCP) at 3 
different hospitals in Los Angeles.

• Previously healthy, homosexual

• June 1981, MMWR

• Dec 1981 NEJM (Gottleib NEJM 1981; 305:1425-31)

• Sept 1982 CDC “AIDS”

Descriptive Studies
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• Sources of (major) variability are controlled by the researcher

• Randomization is often used to ensure that uncontrolled 
factors do not bias results

• The experiment is replicated on many subjects (units) to 
reduce the effect of chance variation

• Pairing or blocking can make the design more efficient (i.e. 
fewer units needed)

• Strong case for causation

Examples

• effect of pesticide exposure on hatching of eggs

• RCT of two treatments for preventing perinatal transmission of 
HIV

Experimental Studies
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Basic principles for experimental studies

• Randomization

– to ensure that uncontrolled factors do not bias the experimental 
results.

• Control/Placebo

– group of subjects or experimental units that are treated identically 
in every way, except that they do not receive an actual treatment. 
Allows for the assessment of treatment effect.

• Blinding

– neither subjects nor anyone working with subjects should know 
who is receiving the treatment and who is getting the placebo to 
avoid bias. Desirable but not always possible.

• Replication

– same treatments are assigned to different sampling units to help 
assess variation in the responses.
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Hypothesis: Lotions A and B equally effective at softening skin

Unpaired analysis
• 20 possible ways of assigning hands to two groups of 3
• Lots of variation between groups even without treatment!

Paired Analysis:
• 8 possible ways of assigning hands to two groups of 3
• Little variation between groups in absence of treatment.

Blocking, Matching
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• Sources of variability (in the outcome) are not controlled by the 
researcher

• Adjustment for imbalances between groups, if possible, occurs 
at the analysis phase

• Randomization usually not an option; samples are assumed to 
be “representative”

• Can identify association, but usually difficult to infer causation

Examples

• natural history of HIV infection

• Fiber intake and coronary heart disease

• association between chess playing and reading skill in 
elementary school children

Observational Studies
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• Ecologic

• Cross-sectional survey

• Prospective cohort

• Case-Control

• Randomized Clinical trial

Common (Clinical) Study Designs

Ecologic studies

• Units of study are populations, not individuals

• Correlate rates of exposure with rates of disease

• Fast, cheap, useful to generate hypotheses, but susceptible to the 

“ecologic paradox”; causal inferences highly suspect

Circumcision and HIV: Ecologic survey
Bongaarts, AIDS 1989;3:373-7

• 409 African ethnic groups
• Capital city HIV seroprevalence
• 20 countries >90% circumcised: HIV seroprevalence 0.9%
• 5 countries <25% circumcised: HIV seroprevalence 16.4%
• Correlation non-circ/HIV 0.9
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Cross-sectional survey

Circumcision and HIV in Kenya
Agot, Epidemiology 2004;15:157-163

• Single ethnic community Western Kenya
• 845 men with HIV-1 test results
• Circumcised 398, uncircumcised 447
• Prevalence ratio (RR) 1.5 uncircumcised associated with HIV-1

• All measurements at one point in time; random or representative 
sample (i.e. not selected on the basis of one of the factors)

• Good for estimating prevalence of a disease

• Efficient for examining relationships between common factors or a 
common disease and risk factors

• Shows association, not causation

• Political polls, health surveys are examples
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Cohort studies

• Groups defined by exposure (exposed versus unexposed)

• Usually prospective, longitudinal

• Measures disease incidence; compare incidence in exposed to 
unexposed (RR)

• Strengths
• good when exposure is rare
• can examine multiple effects of an exposure
• if prospective, can minimize bias in exposure ascertainment
• exposure known to precede disease

• Weakness
• inefficient for rare diseases
• if prospective, expensive and time-consuming
• validity jeopardized by loss to follow-up

• Strongest observational design, but causal inferences still suspect
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Cohort Study

Dietary fat/fiber and breast cancer: Nurses Health Study
Willett JAMA 1992;268:2037-44

• 89,494 women in NHS

• Follow-up 8 years

• 1,439 incident cases breast cancer (1.6%)

• No association between fiber or fat intake and incident breast cancer
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Case-control study

• Cases have the disease; Controls do not have the disease

• Compare (past) exposure rates in the two groups

• Useful for evaluating exposures that cannot be randomized

• Strengths:
• Less time, lower cost compared to cohort study

• Good for rare diseases, diseases with long incubation period

• Weaknesses:
• Selection of cases and controls may be difficult

• Recall bias or misclassification in determination of exposure 

• Temporal ordering of exposure and disease may be uncertain

• Causal inferences suspect
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Case-control study

Glioma and mobile phones
Hepworth BMJ 2006; 332:883-887

• 996 cases of glioma, aged 18 – 69
• 1716 controls
• Interviews to determine mobile phone use patterns
• No association between glioma and recent mobile phone use

Vaginal adenocarcinoma
Herbst NEJM 1971;284:787-881

• Vaginal adenocarcinoma in 8 young women
• 4 controls per case
• Interviewed mothers
• 7/8 cases DESB during pregnancy versus 0/32 controls
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Randomized clinical trial
• Participants allocated randomly to intervention versus no intervention

• Identical enrollment, data collection, follow-up, defined outcomes

• Outcome compared between randomized groups

• Advantages
• Controls bias/confounding (groups similar except for intervention)

• Control on exposure/treatment assignment

• Can examine multiple outcomes

• Disadvantages
• Expensive, time-consuming

• Depends on compliance, high followup rate

• Needs ethical equipoise

• Entry criteria/participation bias may limit external generalizability

• Causal conclusions possible

Fall 2013 Biostat 511 141



72

Circumcision and HIV
Auvert PLoS 2006

• 3,273 men in South Africa (18-24 yrs) randomized to immediate or 
delayed circumcision

• Median 18 month follow-up
• HIV infections: 49 in control, 20 intervention (RR 0.4)
• Controlling for sexual behavior, condom use - results unchanged

Randomized clinical trial

Mwanza STD/HIV
Grosskurth Lancet 1995;346:530-6

• Community randomized clinical trial

• 6 pair-matched communities; 1,000 adults followed for 2 years each 
community

• Intervention: improved STD diagnosis and treatment infrastructure 

• HIV incidence: 1.2% intervention, 1.9% control (RR 0.58)
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“Condom Use increases the risk of STD”

• Individuals with more partners are more likely to use condoms. But 
individuals with more partners are also more likely to get an STD.

• In general, effect of exposure on outcome is constant across levels of 
the confounder; however, pooled table is different (compare to EM)

STD rate
Yes 55/95 (61%)Condom

Use No 45/105 (43%)

 STD rate 
# Partners < 5  

Yes 5/15 (33%) Condom Use 
No 30/82 (37%) 

 
# Partners > 5  

Yes 50/80  (62%) Condom 
Use No 15/23  (65%) 

 

Confounding (aka Simpson’s Paradox)
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• A critical and common problem in observational studies

• Confounding occurs when there is an imbalance between the 
exposure groups with respect to some other risk factor for the 
disease (think of it as a form of selection bias)

• Because of the confounding phenomenon, it’s important that we 
don’t automatically assume causation whenever we see an 
association.

• Statistical methods allow us to evaluate the association between 
two variables.  As shown in the previous example, we can also 
use statistical methods to adjust for confounding provided we 
measured the confounder

Confounding
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EXPOSURE OUTCOME

CONFOUNDER

Causal pathway of interest

Confounder associated with 
outcome – but not in the 
pathway of interest!

Confounder 
associated with 
exposure

Confounding
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USA Today: “Prayer lowers blood pressure”

“Attending religious services lowers blood pressure more than tuning into 
religious TV or radio, a new study says. People who attended a religious 
service once a week and prayed or studied Bible once a day were 40% less 
likely to have high blood pressure than those who didn’t go to church 
every week and prayed and studied the Bible less.”

Confounding
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Conceptual Model Prayer causes lower BP?

healthy

Low BP

Church&
prayer

social

Low BP

Church&
prayer

Church&
prayer

Low BP Yes

No

No

From the information given you can’t tell which model is correct!

Confounding
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• The difficulty with observational data is that “exposure” is not 
randomly assigned. Thus, the exposure groups (prayer/no prayer) 
may not be the same in all other important respects

• Additional examples:

– CD4 cell count among those treated with AZT

– Gender and college admission rates

– and many more …

• Confounding can also occur with other measures of association (e.g. 
regression)

Q: What can we do in these situations?
A: Control for imbalances via stratification (or other statistical methods)
A: Be cautious in our thinking and use of language

Confounding
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 What do we really mean when we say “A causes B”? 

 How can we define the “causal effect” of prayer on blood pressure?

• BP of subject i if he/she prays – Yi(1)

• BP of subject i if he/she doesn’t pray – Yi(0)

•Yi(0) and Yi(1) are called “counterfactual outcomes”

• Define the causal effect as i = Yi(1) – Yi(0)

 In practice, we observe Yi(0) or Yi(1), but not both, so … We can 
never observe i

Causal Inference Concepts
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• Although it is impossible to know i it is sometimes possible to 
estimate the average causal effect:

• How? (Hint: If you can’t know Yi(1) on everybody, what’s the next 
best thing?)

is the average blood pressure if everyone prayed

is the average blood pressure if everyone did not pray

Define:

Y(1)

Y(0)

Y(1) - Y(0) 

Causal Inference Concepts
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BP w/ prayer BP w/o prayer

Y1(1) Y1(0)

Y2(1) Y2(0)

Y3(1) Y3(0)

Y4(1) Y4(0)

Y5(1) Y5(0)

: :

= observed data

Estimate           by Y1(1) + Y2(1) + Y5(1) + … / n1(1)Y

Estimate           by Y3(0) + Y4(0) + … / n0(0)Y

• What key assumption did you have to make?

• Take a sample!

Causal Inference Concepts
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• We can estimate the average causal effect when there is nothing 
(other than exposure) that systematically differs between exposed 
and unexposed groups

• Randomization guarantees this – “no unmeasured confounding”

• With observational data the average outcome among those 
actually exposed may not be equal to the average outcome that 
would be observed if everyone was exposed.

• Sometimes, we can control for imbalances via stratification (or 
other statistical methods) but only if you have measured the 
confounding factors.

• Different populations (i.e. young, old) may have different average 
causal effects (effect modification)

Causal Inference Concepts
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Example: Does consumption of fish oil reduce risk of a heart attack?

Consider the following two study designs:

1. Individuals with and without a recent MI are asked about their 
consumption of fish and/or fish oil over the past 5 years.

2. Individuals at risk for MI are randomized to daily fish oil capsules 
or placebo and followed for 2 years.

• Which design is less likely to be affected by confounding?

Confounding
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Example:

33% reduction in blood pressure after treatment with medication 
in a sample of 60 hypertensive men.

Problem:

Example:

Daytime telephone interview of voting preferences

Problem:

Example:

Higher proportion of “abnormal” values on tests performed in 
1990 than a comparable sample taken in 1980.

Problem:

Problems in Design/Data Collection
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1. Statistics plays a role from study conception to study reporting.

2. Statistics is concerned with making valid inferences about 
populations from samples that are subject to various sources of 
variability.

3. Different studies designs have different strengths and 
weaknesses and may require different statistical approaches. 

4. The potential for confounding means we must be careful in 
making causal interpretations from observational studies

5. You must understand the study design and sampling 
procedures before you can hope to interpret the data!!

Summary
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• Probability - meaning
1) classical
2) frequentist
3) subjective (personal)

• Sample space, events
• Mutually exclusive, independence
• and, or, complement
• Joint, marginal, conditional probability
• Probability - rules

1) Addition
2) Multiplication
3) Total probability
4) Bayes

• Screening
•sensitivity
•specificity
•predictive values

Probability
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Probability provides a measure of uncertainty associated with the 
occurrence of events or outcomes

Definitions:

1. Classical: P(E) = m/N

If an event can occur in N mutually exclusive, equally likely
ways, and if m of these possess characteristic E, then the 
probability is equal to m/N.

Eg What is the probability of rolling a total of 7 on two dice?

Probability
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2. Relative frequency: P(E) m/n
If a process or an experiment is repeated a large number of times, n, 
and if the characteristic, E, occurs m times, then the relative 
frequency, m/n, of E will be approximately equal to the probability 
of E.

E.g. Around 1900, the English statistician Karl Pearson heroically 
tossed a coin 24,000 times and recorded 12,012 heads, giving a 
proportion of 0.5005.
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Relative Frequency
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3. Personal probability (subjective)

E.g. What is the probability of life on Mars?

What is probability Huskies will win Pac-12 in 
basketball in 2012-2013 season?

• Your personal degree of uncertainty.

Personal Probability
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• The sample space consists of the possible outcomes of an experiment 
(could be infinite). An event is an outcome or set of outcomes. e.g. 
roll a die; sample space is (1,2,3,4,5,6), an event is (roll a 3 or a 5)

• Two events, A and B, are said to be mutually exclusive (disjoint) if 
only one or the other, but not both, can occur in a particular 
experiment. e.g. roll a die; events (roll a 3) and (roll an even number) 
are mutually exclusive

• Probability of an event A, denoted P(A), must be between 0 and 1 
(inclusive)

• Probabilities of any exhaustive collection (i.e. at least one must occur) 
of mutually exclusive events is 1

• The probability of all events other than an event A is denoted by 
P(Ac) [ “A complement”] or P(A) [“A bar”], and P(Ac) = 1 - P(A) 

Basic Terminology and Properties
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Example: Roll a single die and consider the following events:

E1 = roll a 1
E2 = roll an even number
E3 = roll a 4, 5 or 6
E4 = roll a 3 or 5

1) What is Pr(E4)?

2) Are E2 and E3 mutually exclusive? E2 and E4?

3) Find a mutually exclusive, exhaustive collection of events. Do the 
probabilities add to 1?

4) What is Pr(E4
c)?

Basic Properties of Probability
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• If A and B are any two events then we write

P(A or B)

to indicate the probability that event A or event B (or both) occurred.

• If A and B are any two events then we write 

P(A and B) or P(AB)

to indicate the probability that both A and B occurred.

• If A and B are any two events then we write 

P(A given B) or P(A|B)

to indicate the probability of A among the subset of cases in which B 
is known to have occurred.

Combining events
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  Disease Status  
  Pos. Neg.  

Pos. 9 80 89Test 
Result Neg. 1 9910 9,911
  10 9990 10,000

 

What is P(test positive)?

What is P(test positive or disease positive)?

What is P(test positive and disease positive)?

What is P(test positive | disease positive)?

What is P(disease positive | test positive)?

Probability
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9/1000

114/1000

376/1000

4/1000

4/160
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1) Addition (“or”) rule

If two events A and B are not mutually exclusive, then the probability 
that event A or event B occurs is:

E.g. Of the students at Anytown High school, 40% have had the 
mumps, 70% have had measles and 32% have had both. What is the 
probability that a randomly chosen student has had at least one of the 
above diseases?

P(A or B) P(A) P(B) P(AB)  

Measles

Yes No Total

Mumps Yes 32 40

No

Total 70 100

General Rules
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2) Multiplication (“and”) rule (special case – independence)

If two events, A and B, are “independent” (probability of one does 
not depend on outcome of the other) then

P(AB) = P(A)P(B)

E.g. From the data on the previous page, does it appear that mumps 
and measles are independent?

Easy to extend for independent events A,B,C,…

P(ABC…) = P(A)P(B)P(C)…

General Rules
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To check for independence, you can check any of the following … 

P(A|B) = P(A) or
P(B|A) = P(B) or
P(AB) = P(A)P(B).

If any one holds, then all three hold; if any one is violated, then all are 
violated

The notion of independent events is pervasive throughout statistics …

Measles

Yes No Total

Mumps Yes 32 8 40

No 38 22 60

Total 70 30 100

Independence
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2) Multiplication (“and”) rule – general case

The general formula for the probability that both A and B will occur is

E.g. P(mumps) = 0.40  and P(both) = 0.32. Find P(measles|mumps).

P(measles | mumps) P(mumps) = P(both)

P(measles | mumps) * 0.40 = 0.32

P(measles | mumps) = 0.80

A)P(A)|P(BB)P(B)|P(AP(AB) 

General Rules
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3) Total probability rule

If A1,…An are mutually exclusive, exhaustive events, then 




n

i 1
ii ))P(AA|P(BP(B)

E.g. The following table gives the estimated proportion of individuals 
with Alzhiemer’s disease by age group. It also gives the proportion of the 
general population that are expected to fall in the age group in 2030. What 
proportion of the population in 2030 will have Alzhiemer’s disease?

P(AD) = 0*.8  +  .01*.11 + .07*.07 + .25*.02 = .011

 Proportion 
population 

Proportion 
with AD

Hypoth.
population

Number 
affected 

< 65 .80 .00 80,000 0 
65 – 75 .11 .01 11,000 110 
75 – 85 .07 .07 7,000 490 

 
Age 

group 
> 85 .02 .25 2,000 500 

  100,000 1100 
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Bayes rule - combines multiplication rule with total probability rule

i i
1

P(B|A)P(A)
P(A|B)

P(B)

P(B|A)P(A)

P(B|A )P(A )
n

i







We will only apply this to the situation where A and B have two 
levels each, say, A and Ac, B and Bc. The formula becomes

c c

P(B|A)P(A)
P(A|B)

P(B|A)P(A) P(B | A )P(A )




Bayes Rule (Theorem)
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A = disease pos.          B = test pos.

Suppose we have a random sample of a population...

D ise a se  S ta tu s
P o s . N e g .

P o s . 9 0 3 0 1 2 0T e s t
R e su lt N e g . 1 0 9 7 0 9 8 0

1 0 0 1 0 0 0 1 1 0 0

Prevalence = P(A) = 100/1100 = .091

Sensitivity = P(B | A) = 90/100 = .9

Specificity = P(Bc | Ac) = 970/1000 = .97

PVP = P(A | B) = 90/120 = .75

PVN = P(Ac | Bc) = 970/980 = .99

Screening – application of Bayes Rule
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A = disease pos.          B = test pos.

Now suppose we have taken a sample of 100 disease positive 
and 100 disease negative individuals (e.g. case-control design)

Prevalence = ???? (not .5!)

Sensitivity = P(B | A) = 90/100 = .9

Specificity = P(Bc | Ac) = 97/100 = .97

PVP = P(A | B) = 90/93 NO!

PVN = P(Ac | Bc) = 97/107 NO!

D ise a se  S ta tu s
P o s . N e g .

P o s . 9 0 3 9 3T e st
R e su lt N e g . 1 0 9 7 1 0 7

1 0 0 1 0 0 2 0 0

Screening – application of Bayes Rule
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A = disease pos.
B = test pos.

Assume we know, from external sources, that P(A) = 100/1100. 
Then for every 100 disease positives we should have 1000 
disease negatives …. 1:10.

Make a mock table …

  Disease Status  
  Pos. Neg.  

Pos. 90 3 × 10 120Test 
Result Neg. 10 97 × 10 980
  100 100 × 10 1100

 
90

PVP= .75
90+3 10




Screening – application of Bayes Rule
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100
1100

100 1000
1100 1100

P(B|A)P(A)
PVP  P(A|B)

P(B)

P(B|A)P(A)

P(B|A)P(A) P(B|A)P(A)

.9

.9 .03

.9 100
.75

.9 100 .03 1000

 







  


 
  

Now, use Bayes rule …

Another way of thinking about this – the case control design has 
given us a biased sample (too many cases). Bayes formula is just 
giving the appropriate weights to remove the bias.

Screening – application of Bayes Rule
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• Probability - meaning
1) classical
2) frequentist
3) subjective (personal)

• Sample space, events, complement
• Mutually exclusive, independence
• and, or, given
• Joint, marginal, conditional probability
• Probability - rules

1) Addition
2) Multiplication
3) Total probability
4) Bayes

• Screening
•sensitivity
•specificity
•predictive values

Summary


