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Review

The proportional hazards regression model is given by

h(t|X) = h(t) exp(X1β1 + · · ·+ Xpβp).

• The predictors, X1, . . . , Xp are assumed to act additively on

log h(t|x).

• log h(t|x) changes linearly with the βs.

• The effect of the predictors is the same at all times t.

• In parametric survival models, we make an assumption on

the shape of the underlying hazard, h(t), and therefore we

are making assumptions about S, H and f .
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• The hazard ratio for a subject with a set of predictors X∗

compared to a subject with a set of predictors X is

hr(X∗ : X) =
exp(X ∗ β)
exp(Xβ)

= exp{(X∗ −X)β}.

• The point estimate for the hazard ratio is

ĥr(X∗ : X) =
exp(X ∗ β̂)

exp(Xβ̂)
= exp{(X∗ −X)β̂},

where β̂ is the maximum likelihood estimate of β.

• We can construct (1 − α)100% confidence intervals for the

hazard ratio as

exp{(X∗ −X)β̂ ± Z1−α/2ŝe((X∗ −X)β̂)}.

BIOST 515, Lecture 17 2



Cox proportional hazards regression model

The Cox PH model

• is a semiparametric model

• makes no assumptions about the form of h(t) (non-

parametric part of model)

• assumes parametric form for the effect of the predictors on

the hazard

In most situations, we are more interested in the parameter

estimates than the shape of the hazard. The Cox PH model is

well-suited to this goal.
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Brief overview of estimation of β

Parameter estimates in the Cox PH model are obtained by

maximizing the partial likelihood as opposed to the likelihood.

The partial likelihood is given by

L(β) =
∏

Yi uncensored

exp(Xiβ)∑
Yj≥Yi

exp(Xjβ)

The log partial likelihood is given by

l(β) = log L(β) =
∑

Yi uncensored

{Xiβ − log[
∑

Yj≥Yi

exp(Xjβ)}]
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Partial likelihood

• Cox and others have shown that this partial log-likelihood

can be treated as an ordinary log-likelihood to derive valid

(partial) MLEs of β.
• Therefore we can estimate hazard ratios and confidence

intervals using maximum likelihood techniques discussed

previously. The only difference is that these estimates are

based on the partial as opposed to the full likelihood.
• The partial likelihood is valid when there are no ties in the

data set. That is no two subjects have the same event time.
• If there are ties in the data set, the true partial log-likelihood

function involves permutations and can be time-consuming

to compute. In this case, either the Breslow or Efron

approximations to the partial log-likelihood can be used.
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Model assumptions and interpretations of
parameters

• Same model assumptions as parametric model - except no

assumption on the shape of the underlying hazard.

• Parameter estimates are interpreted the same way as in

parametric models, except no shape parameter is estimated

because we are not making assumptions about the shape of

the hazard.
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Example

h(t|rx, age) = h(t) exp(β1 × rx + β2 × age)

> cph1=coxph(Surv(futime, fustat)~rx+age , ovarian)
> summary(cph1)

coef exp(coef) se(coef) z p
rx -0.804 0.448 0.6320 -1.27 0.2000
age 0.147 1.159 0.0461 3.19 0.0014

exp(coef) exp(-coef) lower .95 upper .95
rx 0.448 2.234 0.130 1.54
age 1.159 0.863 1.059 1.27

Rsquare= 0.457 (max possible= 0.932 )
Likelihood ratio test= 15.9 on 2 df, p=0.000355
Wald test = 13.5 on 2 df, p=0.00119
Score (logrank) test = 18.6 on 2 df, p=9.34e-05
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Interpreting the output from R

This is actually quite easy. The coxph() function gives you

the hazard ratio for a one unit change in the predictor as well

as the 95% confidence interval. Also given is the Wald statistic

for each parameter as well as overall likelihood ratio, wald and

score tests.

What if we wanted to estimate hr(rx = 1, age = 50 : rx =
2, age = 60)?

The point estimate is easily obtained as

exp{−0.804(1− 2) + 0.147(50− 60)} = 0.514.

How do we interpret this quantity?
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How do we obtain the confidence interval?

• We can get the variance-covariance matrix for the parameter
estimates from the fitted object.

> cph1$var
[,1] [,2]

[1,] 0.399486408 0.004696922
[2,] 0.004696922 0.002129550
> sqrt(diag(cph1$var))
[1] 0.63204937 0.04614705

• Estimate the variance of β̂1(1− 2) + β̂2(50− 60).

v̂ar(−β̂1 − 10β̂2) = v̂ar(β̂1) + 100v̂ar(β̂2) +

2(−1)(−10)ĉov(β̂1, β̂2)

= 0.399 + 100× 0.00213 + 20× 0.00470

= 0.706
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• The 95% CI for hr(rx = 1, age = 50 : rx = 2, age = 60) is

0.514× exp(±1.96×
√

0.706) = (0.099, 2.67)

What is the appropriate interpretation for this confidence

interval?
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Partial likelihood ratio tests

What if we want to do a likelihood ratio test for H0 : β2 = 0
in the previous model?

Reduced model:

>cph1r=coxph(Surv(futime, fustat)~rx, ovarian)
> cph1$loglik
[1] -34.98494 -27.04190
> cph1r$loglik
[1] -34.98494 -34.45921

-2 log L (full model) = −2×−27.04190
-2 log L (reduced model) = −2×−34.45921
X2 = −2 log L (reduced model) − (−2 log L (full model)) =
68.92− 54.08 = 14.83 > χ2

1 = 3.84

BIOST 515, Lecture 17 11



Stratification

The stratified Cox model allows the form of the underlying

hazard function to vary across levels of stratification variables.

What does this mean?

• Suppose we have a predictor of interest, X, this could be

treatment, for example.

• Z is a secondary categorical predictor that we want to adjust

for when making inferences about X’s relationship to the

time-to-event endpoint.

• Note: While the risk factor or exposure that Z represents

does not have to be categorical, Z does. Z could be the

BIOST 515, Lecture 17 12



result of breaking a continuous predictor into groups.

To adjust for Z without estimating its effect on the outcome,

we can perform a stratified analysis by fitting

h(t|X, Z = j) = hj(t) exp(Xβ), j = 1, . . . , C (number of levels in Z).

There is only one parameter fit for Xs effect on the hazard,

but it is adjusted for Z. This is different than an interaction.
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Why stratify?

• Allows a factor to be adjusted for without estimating its

effect.

• Predictor may not satisfy proportional hazards assumption,

and it may be too complicated to model the hazard ratio for

that predictor as a function of time.

• Can be used to make graphical checks of the proportional

hazards assumption. We will look at this more later.
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Stratification example

Suppose in the previous ovarian cancer example, we stratify

by age instead of including it as a predictor in the model. We

will create two strata, women over the age of 60 (n=7) and

women younger than 60 (n=19). There are 6 events in each

group. We fit the following regression model,

h(t|rx, agegrp) = hagegrp(t) exp(rx× β), agegrp = 1, 2.

> cph2=coxph(Surv(futime, fustat)~rx+strata(age>60), ovarian)
> cph2

coef exp(coef) se(coef) z p
rx -0.43 0.65 0.6 -0.716 0.47

Likelihood ratio test=0.52 on 1 df, p=0.471 n= 26
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How does this compare to an additive model with agegrp as a
predictor?

> cph3=coxph(Surv(futime, fustat)~rx+(age>60), ovarian)
> summary(cph3)
Call:
coxph(formula = Surv(futime, fustat) ~ rx + (age > 60), data = ovarian)

n= 26
coef exp(coef) se(coef) z p

rx -0.273 0.761 0.613 -0.444 0.66000
age > 60TRUE 2.258 9.560 0.685 3.294 0.00099

exp(coef) exp(-coef) lower .95 upper .95
rx 0.761 1.313 0.229 2.53
age > 60TRUE 9.560 0.105 2.495 36.63

Rsquare= 0.364 (max possible= 0.932 )
Likelihood ratio test= 11.8 on 2 df, p=0.00281
Wald test = 12.2 on 2 df, p=0.00221
Score (logrank) test = 17.3 on 2 df, p=0.000172

BIOST 515, Lecture 17 16



What about an interaction?

> coxph(Surv(futime, fustat)~rx*(age>60), ovarian)
Call:
coxph(formula = Surv(futime, fustat) ~ rx * (age > 60), data = ovarian)

coef exp(coef) se(coef) z p
rx -0.350 0.705 0.818 -0.428 0.67
age > 60TRUE 2.012 7.479 1.847 1.089 0.28
rx:age > 60TRUE 0.176 1.192 1.230 0.143 0.89

Likelihood ratio test=11.8 on 3 df, p=0.0082 n= 26
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