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Reading: Chapter 13 and Jarvik GP (1998) Complex segregation analyses: uses 
and limitations.  Am J Hum Genet 63:942-946. 
 
 
There are a number of reasons why there is interest in the detection of major genes.  
For us, the two most relevant are: 
 
• the potential to isolate and characterize genes influencing our trait of interest 

(whether good or bad) 
• to be able to adjust for these since a good deal of quantitative genetic theory 

assumes that a trait is influenced by many genes of small effect 
 
There are various methods available that test for the presence of a major gene: 
 
• for populations in which controlled breeding is possible   
 
 
 
 
 
• methods that rely on departure from normality to indicate the presence of a major 

gene 
 
 
 
 
 
• methods that are based on resemblance between parents and offspring:  Bartlett’s 

test, Fain’s test, Major-gene Indices (MGI) 
 
 
 
 
 
Of greater interest to us will be  
 
• mixture models (does not take into account relatedness of individuals)  
• complex segregation analysis (used for data consisting of pedigrees) 
 
Mixture Models and Commingling Analysis 
 
In general, we can write the distribution of a trait that is a mixture of n underlying 
distributions as: 
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It is usual to assume that the population is in Hardy-Weinberg equilibrium at the major 
locus and that the variances across the underlying distributions are equal.  For a 
diallelic locus that gives us a likelihood for individual i of: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and a full likelihood of 
 
 
 
 
 
Maximum likelihood estimates can then be found for the 5 parameters. 
 
Testing for Specific Modes of Inheritance 
 
The likelihood ratio test can be used to test between various hypotheses: 
 
 
 
 
 
where Lr corresponds to the likelihood function for which r parameters from the full 
model have been assigned values. 
 
 
If the null hypothesis is not nested within the alternative hypothesis, then the large-
sample distribution of the LRT statistic is not necessarily distributed chi-squared.  One 
method for comparing nonnested hypotheses is Akaike’s information content (AIC) 
where the model with the smallest AIC is preferable: 
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As an example of commingling analysis, consider the results of Knoblauch et al. (2000)  
A Cholesterol-lowering gene maps to chromosome 13q.  Am J Hum Genet 66:157-166.  
They performed a commingling analysis on a subset of individuals within familial 
hypercholesterolemia families.  The trait of interest was low density lipoprotein (LDL) 
which was adjusted for age effects.   
 
Excerpt from paper:  
 

In the FH-heterozygous family members, we found a modest, albeit significant (P < 

.04), effect of age on LDL values, allowing us to correct for the effects of age. Figure 
1 shows the frequency distribution of corrected LDL-cholesterol values in FH-
heterozygous subjects. Commingling analysis using ILINK gave significant evidence 
(P < .03) against a unimodal distribution of the corrected LDL values. The mean LDL 
value of the lowest genotypic distribution in the model was 138 mg/dl; the SD was 29 
mg/dl. The other means were close together, at 198 and 203 mg/dl, respectively. 
This finding was interpreted as indicating a recessive trait, which was in accordance 

with a segregation analysis that used LOKI (Heath 1997).  
 

 
 
 
Figure 1 Frequency distribution of the subjects, in terms of their corrected LDL-
cholesterol concentrations. Commingling analysis by use of ILINK allowed us to 

establish phenotypic criteria in terms of being "affected" by a putative cholesterol-
lowering gene (LDL cholesterol <150 mg/dl). 
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Problems with Non-normality 
 
Non-normality can be accommodated within the likelihood function through the use of 
the Box-Cox transformation: 
 
 
 
 
 
 
 
with each of the underlying distributions having a maximum of 3 parameters.  This 
allows us to test for whether an observed skewed distribution results from 
 
• a single naturally skewed distribution 
 
 
 
 
 
• a mixture of underlying normals 
 
 
 
 
 
• a mixture of underlying distributions that can be transformed to normality 
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Modeling skewness  
 
Given 
 

 z = observed phenotype, i.e. observed trait value 
 
the distribution of z WITHIN each of the genotypic classes can be transformed to a 
normal distribution through the use of the Box-Cox transformation: 
 
 
 
 
 
 
For our scenario, it could be assumed that the individual distributions have the same 
transformation.  That is, 
 
 
 
 
 
Let us suppose that we can find the correct transformation.  The distribution on the 
transformed scale is then: 
 
 
 
 
 
 
 
 
 
 
If we assume that the observed phenotypic distribution is such that 0<y<∞ then 
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Our full likelihood is then  
 
 
 
 
 
which represents a mixture of three distributions that have separate means, but the 
same variance and transformation parameter.  It would obviously be possible to extend 
this such that you allow for unequal variances or unequal transformation parameters.  
The program NOCOM does not allow for different transformation parameters but can 
allow for separate variances (although it is not recommended).  More operational 
characteristics can be found at: 
 
 http://linkage.rockefeller.edu/ott/nocom.htm 
 
The NOCOM program was originally introduced in the following article: 
 

Ott J (1979) Detection of rare major genes in lipid levels.  Hum Genet 51:79-91 
 

They used the program to analyze the distribution of triglycerides for 991 unrelated men 
in the Seattle area.  Their results follow: 

 

 
 
They had reason to believe that triglycerides were distributed log-normal within each 
sub-distribution (one distribution or more).  From their results, what would conclusions 
would you draw concerning the underlying genetics of triglycerides? 
 
 
Final words on commingling analysis 
 
• the trait distribution could be skewed due to non-genetic reasons 
• it is hard to distinguish a skewed distribution from a mixture of normals 
• if we had a mixture of a number of different skewed distributions, then by assuming 

a mixture of normals our modeling will be incorrect and so we might expect a loss in 
power to detect commingling 
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Through our discussion of commingling analysis, we assumed that we had a sample of 
n random (unrelated) individuals.  This gave us a likelihood that was the product over 
the phenotypic distribution for these n individuals. 
 

Obviously, if our sample contains related individuals, then this likelihood will no 
longer be correct as related individuals will have correlated trait values (recall the 
information that we covered in Chapter 7). 
 
IN ADDITION, through the use of related individuals, we would expect to have 
increased power to detect a major gene due to the extra information given by 
transmissions from parents to offspring. 
 

The extension of the simple mixture model of commingling analysis to the use of 
pedigree information is known as . . . 
 
Complex Segregation Analysis 
 
Consider a diallelic QTL locus with alleles Q and q.  Genotypes are encoded by  
 








=

qqfor
Qqfor
QQfor

g
3
2
1

 

 
For the ith family, we have  
 
 
 
 
 
 
 
 
The likelihood for the jth offspring of the ith family CONDITIONAL on the parent’s 
genotypes is: 
 
 
 
 
 
It is important to note that g represents the genotype AT THE QTL which we cannot 
actually measure.  Also, note that this is NOT THE SAME AS LOOKING AT A 
MARKER. 

gf gm 

go 
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Example 4.1:  What is the likelihood for an individual with (Qq, Qq) parents if we 
assume Mendelian segregation at the QTL? 
 
 
 
 
 
 
 
 
 
 
Thus for the ith family we have the CONDITIONAL likelihood: 
 
 
 
 
 
Recall, that the parental genotypes are unknown and so we must sum over all possible 
parental genotypes.  This gives us the UNCONDITIONAL likelihood: 
 
 
 
 
 
If it is assumed that the QTL is in Hardy-Weinberg Equilibrium, then the frequencies for 
the parental genotypes can be written as our well-known functions of p=Pr(Q).  The 
overall likelihood is then a function of five unknown parameters: 
 
 
 
 
To lead to a more robust approach, it was suggested by Elston et al. (1975) that  
 
 Pr(go | gm, gf)  
 
be modeled as unknown parameters:   
 
 τx=Pr(genotype x transmits a Q allele) 
 
Example 4.2:  Given these additional parameters, what is the conditional likelihood for 
the trait value of a child given (Qq,QQ) parents? 
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In order to feel strongly about the presence of a major-gene, it is recommended that 
1. there is a significantly better overall fit of a mixture model compared with a single 

normal 
2. the hypothesis of Mendelian segregation is NOT rejected 
3. while the hypothesis of equal transmission for all genotypes is rejected 
 
1⇒ 
 
 
 
 
 
2⇒ 
 
 
 
 
 
3⇒ 
 
 
 
 
 
In addition to the genetic effects due to the major locus, polygenic background can be 
added to the model.  This is done by assuming  the background polygenes are 
completely additive and that the background genetic value A is normally distributed with 
mean 0 and variance 2

Aσ .   
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Example 4.3:  The following table is from a segregation analysis of Radiosensitivity.  It 
can be found in Roberts SA (1999) Heritability of cellular radiosensitivity:  a marker of 
low-penetrance predisposition genes in breast cancer? Am J Hum Genet 65: 784-794 
 
Table 3: Model Parameters from Segregation Analysis of G2 Radiosensitivity in 20 Families 

 
 

Model 1: 
General 
Transmission 
and 
Polygenes 

Model 
2: 
Major-
Gene 
Only 

Mod
el 3: 
Spo
radi
c 

Model 
4: 
Polyg
ene 
Only 

Model 5: 
Major-
Environm
ental Only

Model 6: 
Major 
Gene + 
Polygen
e 

Model 
7: 
Major-
Gene-
Only, 
Non-
Mendel
ian 

Model 8: 
General-
Transmiss
ion Only 

Allele 
frequency, 
p 

.96 .96 NA NA .77 .96 .98 .94 

Means:  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

nn 4.48 4.48 4.63 4.67 4.48 4.48 4.48 4.47 
ns 4.85 4.85 NA NA 4.81 4.84 4.85 4.81 
ss 5.27 5.27 NA NA 5.17 5.30 5.28 5.18 
Residual 
SD 

.101 .101 .23 .21 .077 .10 .10 .077 

Polygene 
heritability, 
H 

0a [0] NA .79 [0] .30 [0] [0] 

Genotype-
transmissio
n 
probabilitie
s:b 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

1 .96 [1] NA NA [p] [1] [1] .96 
2 .37 [.5] NA NA [p] [.5] .35 .37 
3 .29 [0] NA NA [p] [0] [0] .29 
2 × Log 
likelihood 

76.6 68.5 9.8 18.1 50.8 71.2 71.4 76.6 

No. of fitted 
parameters 

9 5 2 3 5 6 6 8 

Likelihood-
ratio 2-test 
P values: 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Compared 
with model 
1 

NA .090 <.00
1 

<.001 <.001 .15 .16 1.0 

Compared 
with model 
2 

.090 NA <.00
1 

NA NA .11 .087 .045 

NOTE.NA = not applicable. Parameters in square brackets were held fixed in the model.  
a Fitted parameter value at its lowest boundary. 
b 1, 2, and 3 take values of 1, .5, and 0, respectively, for Mendelian inheritance (see Subjects and Methods). 
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Other extensions of CSA 
 
CSA has been extended in several ways.  A good review is given in the following paper:  

Jarvik GP (1998) Complex segregation analyses: uses and limitations.  Am J 
Hum Genet 63:942-946 

 
CSA has been extended to allow for: 

• multivariate traits 
• genotype × environment interaction 
• general pedigrees 
• various computational procedures for the likelihood function 
• nonrandom ascertainment 

 
Complex Segregation Analysis of Discrete Characters 
 
Consider a dichotomous trait which is coded as follows: 
 

diseased
normal

y




=
1
0

 

 

Define the penetrance, ψg, of a genotype to be the probability that an individual with 
genotype g is diseased: 
 

 ψg=Pr( y=1 | g). 
 
The likelihood function for the trait of an individual with genotype g is then: 
 

=)|( gyl  

 
 
 
Arguments for constructing the likelihood for traits measured on a collection of siblings 
are the same as for a continuous trait.  The conditional likelihood for a child’s trait given 
their parental genotypes is: 

=),|( fm ggyl  
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The unconditional likelihood is then: 
 

=)(yl  

 
 
 
 
 
A polygenic background can also be added to the model.    This can be done first by 
allowing the penetrance to be a function of the polygenic backround, ψ(g, A). 
 
The likelihood for an individual’s trait given their genotype, g, and polygenetic 
background, A, is then: 
 

=),|( Agyl  

 
 
 
This can be used to compute the likelihood for a child’ trait conditional on their parental 
genotypes and polygenic backgrounds: 
 

=),,,|( fmfm AAggyl  
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Relating a discrete and quantitative traits 
 

The penetrance functions, ψ(g, A), can be modeled assuming an underlying LIABILITY 
MODEL. 
 
For instance, suppose disease occurs once the liability exceeds some threshold T.  The 
normal condition then corresponds to individuals with liability under T: 
 

∫
∞

+=

>=

T
G dzAz

AgTzAg

)1,;(

),|Pr(),(

µϕ

ψ

 

Defining the cumulative distribution function for a unit normal U as )Pr()( xUx <=Φ  
then: 
 
 
 
 
 
 
 
 
Example 4.4:  Use this relationship to write the likelihood for a child’s trait value 
conditional on their parental genotypes being gm=1 and gf=2.   
 

That is, derive ).,,2,1|( fmfm AAggy ==l  

 
 
 
 
 
 
 
More information regarding threshold characters is given in Chapter 25. 
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Before we move on to methods for linkage analysis of quantitative traits, we’re going to 
cover a type of aggregation/segregation analysis for dichotomous traits that relies 
heavily on the biometrical model. 
 
The biometrical model corresponds to Fisher’s decomposition of the genotypic value 
using least squares to fit additive effects for each allele with dominance effects being 
the residuals to this fit. 
 
The following reference for this material has been placed in the class file: 
 

Risch N (1990) Linkage strategies for genetically complex traits. I. Multilocus 
models. Am J Hum Genet 46:222-228 

 
Recurrence risk of disease in relatives 
 
The relative risk ratio represents the increased risk of disease given an individual is 
related to a diseased person.   This is often denoted by λR and is equal to: 
 

)individual dPr(disease
)individual diseased | diseased is R  typeof relativePr(

=Rλ  

 
The numerator is often called the relative recurrence risk.   
 
− We will use the biometrical model to develop a general framework for computing the 

relative recurrence risk of disease as a function of the underlying genetic parameters 
and the relative type. 

 
− This framework has proven useful for studying patterns of risk across relatives as an 

indicator for the underlying mode of inheritance.  In particular, it has proved useful 
for separating additive and multiplicative risk models.   
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For example, Risch1 studied Schizophrenia and compared observed relative recurrence 
risk across many types of relatives with what is expected from seven different disease 
models: 
 

 
 
Let’s see how this is done for a single-locus model.   
 
We’ll represent our disease trait by X where X=1 indicates a diseased individual and 
X=0 indicates a non-diseased individual.  Further, let X1 be the indicator of disease for 
an individual with X2 the indicator for their relative.  With this notation, 
 

K = Pr(Xi=1) = Pr(individual is diseased) = population prevalence 
 
and 

KR = Pr(X2=1 | X1=1) = relative recurrence risk. 
 

This leads to the relative risk ratio being equal to 
 

K
KR

R =λ  

 

                                                           
1 Risch N (1990) Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 46:222-
228 
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What is K equal to?  For the single-locus model, assume there are two alleles, D and N, 
that are in Hardy-Weinberg Equilibrium with p=Pr(D).   
 

=

×==

==

==

∑

∑

∈

∈

    

g) genotype has 1 ualPr(individg) genotype has 1 individual| 1Pr(    

g) genotype has 1 individual and 1Pr(    
)1Pr(

}{
1

}{
1

1

genotypesg

genotypesg

X

X
XK

 

 
 
 
 
 
Before we continue with the derivation of KR, let’s reconsider the biometrical model for 
the genotypic contribution to a trait.  This will allow us to derive  
 
 KR*K  = Pr(X2=1, X1=1)  
 = E(X1*X2)  
 = Cov(X1,X2) + K2 

 
Consider the phenotype Y where Y represents a standardized version of X as described 
below. Let fkl be the penetrance for genotype (k,l).  We will treating the penetrance 
values as we previously used genotypic values.   
 
Let pk and pl represent allele frequencies for the kth and lth allele.  We will also assume 
(for simplicity) that 
 

0)( == ∑∑
k l

lkkl ppfYE  

 
Recall, the biometrical model breaks the genetic contribution into an effect due to each 
allele and the departure from these effects.  We now apply this concept to the 
penetrances: 
 
 lkklf αα +=  
 
The αk and αl are chosen to minimize the deviations δkl = µkl - αk - αl using least 
squares.  That is, they minimize ∑∑ −−=

k l
lklkkl ppfSS 2)( αα . From our previous work, 

we then have: 
 

∑=
l

lklk pfα , 
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and the variance in the genotypic contribution to the trait Y due to the additive effects of 
alleles or the additive genetic variance is  
 

∑=
k

kka p22 2 ασ  

The variance due to departures from the additive effects of alleles or the dominance 
genetic variance is then 
 

∑∑=
k l

lkkld pp22 δσ  

 
So that 2

7
22),cov( dijaijji YY σσ ∆+Φ=   where ijΦ is the kinship coefficient and ij7∆ is the 

coefficient of fraternity. 
 
We can now complete our derivation: 
 

2

2
7

2

2

2
21

2
21

2
12

12

12

2
1     

),(     

)(     

)1,1Pr(     

/)1,1Pr(     

)1|1Pr(     

K

K
KXXCov

K
XXE
K
XX
K

KXX
K
XX

K
K

dijaij

R
R

σσ

λ

∆+Φ
+=

+
=

=

==
=

==
=

==
=

=

      (equation 4.1) 

 
 
The last step was due to Y being a standardized version of X.
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Example 4.5: Relatives of n degree are separated by n meioses.  Parent-offspring pairs 
are first-degree relatives.  Grandparent-grandchild and uncle-niece are second-degree 
relatives and first cousins are typical third-degree relatives.  The following table 
summarizes the adjusted relative risk ratios for first, second and third-degree relatives.   
 
 

R Relative Type Adjusted Risk Ratio (λR-1) 
1 First-degree 

2

2

2K
aσ  

2 Second-degree 
2

2

4K
aσ  

3 Third-degree 
2

2

8K
aσ  

 
 
Summarize how the adjusted relative risk ratios for first, second and third degree 
relatives compare. How does this information help in study planning?   
 
 
 
 
 
 
 
 
Note that the above adjusted risk ratios are defined by equation 4.1 and the coefficients 
of kinship and fraternity.  Below is a summary of these coefficients for reference. 
 
Table 2.1: Coefficients of kinship and fraternity for common relationships in a non-inbred 
population.  Adapted from Lynch and Walsh2 
 

Relationship ijΦ  ij7∆  
Parent-offspring 1/4 0 
Grandparent-grandchild 1/8 0 
Great grandparent-great grandchild 1/16 0 
Half sibs 1/8 0 
Full sibs, dizygotic twins 1/4 1/4 
Uncle(aunt) – nephew(niece) 1/8 0 
First cousins 1/16 0 
Double first cousins 1/8 1/16 
Second cousins 1/64 0 
Monozygotic twins 1/2 1 

                                                           
2 Lynch M and Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland 
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Extension to multiple loci 
 
There are two general extensions that are used for relating susceptibility loci to disease 
risk:  additive and multiplicative. 
 
• For an additive model, the Pr(disease given genotype i at locus 1 and genotype j at 

locus 2) = Pr(disease given genotype 1 at locus 1) + Pr(disease given genotype 2 at 
locus 2).  In this case,  

 

 )1()1(1 2

2
2

1

2
1 −






+−






=− RRR K

K
K
K λλλ  where Ki is the prevalence of disease 

due to locus i and λiR is the relative risk ratio for the ith locus 
 

 λ1-1 = 2(λ2-1)=4(λ3-1) where λi is the risk ratio for relatives of degree I (this is 
the same relationship as for a single locus) 

 
 we cannot distinguish a single locus from two (or multiple additive) loci 

 
• For a multiplicative model, Pr(disease given genotype i at locus 1 and genotype j at 

locus 2) = Pr(disease given genotype 1 at locus 1) × Pr(disease given genotype 2 at 
locus 2).  In this case,  

 
 λR = λ1Rλ2R for relatives of type R 

 
 λ2 = λ12λ22 = 1/4(λ11+1) x (λ21+1) where λij is the relative recurrence risk for j 

degree relatives for locus i 
 

 λ3 = 1/16 x (λ11+3) x (λ21+3)  
 

 note that the decay is greater than what is expected under the additive model 
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What does this provide us?  Let’s answer this in the context of the example from Risch3.  
Consider the following in your discussion: 
 
− Based on the observed data, does an additive model fit the data well? 
− Note that λD > λS.  What does this tell you? 
− Is there any evidence of dominance?  The table on p18 might be useful here. 
− The risk to monozygotic twins is highly underestimated when fitting an additive 

model.  What does this imply? 
− What appears to be the most consistent model(s)? 

 

 
 

                                                           
3 Risch N (1990) Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 46:222-
228 


