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Reading:  Chapter 14 p413-424 
 
 
 
Marker-Trait Associations 
 
Recall that alleles at two loci can occur in a gamete MORE (or less) often than expected by 
chance.  When this occurs, we say that the alleles are in linkage disequilibrium or in gametic 
phase disequilibrium or are associated.  Previously, we defined the linkage disequilibrium 
coefficient as a measure of this lack of independence: 
 
 

D =  
 
 

No linkage disequilibrium  ⇒      
 
 
Linkage disequilibrium ⇒ 
 
 
When such associations occur, we expect the distribution for a trait to differ depending on an 
individual’s marker genotype.  This simple idea can be used for mapping QTLs. 
 
Does this imply that the marker is in a causative relationship with the QTL? 
 
 
 
 
 
 
 
 
 
 
Fine Mapping using Linkage Disequilibrium 
 
There are many evolutionary forces that can cause an association between alleles at two loci; 
however, only linkage disequilibrium is correlated with physical distance between two loci 
(week 2 lecture notes).  With this in mind, it was suggested by Bodmer (1986): 
 

“...it should be possible to saturate the relevant region with further polymorphic markers and 
look for the ones that have a population association with the trait, rather than increasing the 
number of families analyzed to search for closer linkage.  This is the most efficient way of 
finding closely linked markers, since [human] family data are very inefficient at 
distinguishing between small recombination fractions such as 0.5% versus 5%” 
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The optimal case: 
 
• “bad” alleles descend from a single ancestral mutation 
• age of the ancestral mutation is neither too young nor too old 
• expanding population that can be traced back to a small number of founders 
• a few examples:  Finnish, Alpine isolates, some Jewish populations, Hutterites, Amish 
 
Example 6.1:  Hastbacka et al. (1992) studied the autosomal recessive disease Diastrophic 
Dysplasia (DTD).  Using 18 pedigrees, the gene for DTD was localized to within 1.6 cM of a 
marker locus using multipoint linkage analysis.  Fine-mapping thru linkage disequilibrium  
mapping narrowed the region to a marker within 70kb. 
 
Usage of linkage disequilibrium for mapping genes in more heterogeneous populations has been 
suggested: 
 
• 
 
 
• 
 
 
• 
 
     
In heterogeneous populations, associations between a marker and quantitative trait can arise due 
to population substructure.  Chapter 14 example 17 of the text provides a nice example of this. 
 
The transmission/disequilibrium test (TDT) 
 
The TDT uses family data to avoid finding associations due strictly to population substructure.  
The basic idea behind the TDT (and any of its derivatives) is: 
 
• to look for preferential transmission of  a parental marker allele to an affected offspring 
• using non-transmitted alleles from heterozygous parents as “controls”  
• thus providing a test of linkage and association for a sample of trios 
 
Example 6.2:  Consider the following family: 
 
 
 
 
 
 
 
 

M2M2 
unaffected 

M1M2 
affected 

D N 

M1 M2 

N N 

M2 M2 
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If the marker and susceptibility locus are not linked, what family is equally likely to be observed 
(conditional on all marker and disease genotypes and the children’s disease status): 
  
 
 
 
 
 
 
 
 
 
 
 
What if the marker and susceptibility locus are linked, say θ=0.001.  What can we say about the 
observed family? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What allows us to make this statement?  How is this different from the scenario of an unlinked 
marker and susceptibility locus? 
  
 
 
 
 
 
The data from such families can be summarized as follows: 

 
  Not 

Transmitted 
  A a 

A n11 n12 Transmitted 
a n21 n22 

? 
unaffected 

 ? 
affected 

D N 

? ? 

N N 

? ? 

Equally 
likely 

M2M2 
unaffected 

M1M2 
affected 

M1 
D 

M2 
N 

  
unaffected 

  
affected 

M2 
N 

M2 
N 

 
D 

 
N 

 
N 

 
N 
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If we have h=n12+n21 heterozygous parents, then the number of transmissions of marker allele A 
from these parents is distributed: 
 
 n12 ~ 
 
where p=Pr(A transmitted | Aa parent). 
 
Under the null hypothesis of no linkage or no association, p= 
 
Exact tests can be constructed or for large h:  
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Example 6.3: In the paper, 
 

Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage 
disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). 
Am J Hum Genet 52: 506-516  

 
the TDT was used to test for linkage for the class 1 alleles of the insulin gene 5’ VNTR with an 
IDDM susceptibility locus.  Previous case-control tests had found significant association, but 
linkage studies were not able to find significant linkage for this marker. 
 

 NOT TRANSMITTED 
TRANSMITTED Class 1 Other 
Class 1  78 
Other 46  

 
Find T: 
 
 
 
 
What would your conclusion be? 
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Segregation Distortion  
 
The TDT can be positive due to segregation distortion.  Segregation distortion occurs when 
heterozygous individuals preferentially transmit one allele (irrespective of the disease status of 
the child).  Care must be taken to rule out this possibility. 
 
Example 6.4:  Spielman et al. (1993) also obtained transmission information from parents to their 
unaffected offspring: 
 

 NOT TRANSMITTED 
TRANSMITTED Class 1 Other 
Class 1  42 
Other 62  

 
Segregation distortion can be ruled out by testing whether the transmission (from heterozygous 
parents) of the allele to affected children is different from the transmission to their unaffected 
children: 
 
 
 
 
 
 
X2= 
 
 
 
 
 
p-value= 
 
Conclusion: 
 
 
 
The TDT has been extended to many different scenarios: 
 
• logistic regression framework 
• dichotomous trait when parental genotype information is not available 
• quantitative trait in a regression framework (for families with and without parental genotype 

information) 
• asymptotic normal test statistic for a quantitative trait  
• markers with multiple alleles 
• multiple markers 
• pedigree data 
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All of these extensions can be applied to samples of families with multiple children.  However, the 
null hypothesis must be adjusted.  To understand why, consider the following family again: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Suppose a third offspring is obtained that is affected and has marker genotype M1M2.  There are two 
observations that can be made: 
• under the null hypothesis of no linkage, marker transmissions to the each of the children are 

independent 
• under the null hypothesis of no association, marker transmissions to each of the children ARE 

NOT independent 
 
Why are these statements true? 
 
 
 
The following table describes the hypotheses tested given the trait and data types: 

 Trait Data Linkage Association1 
Dichotomous Independent Trios Yes Yes 
 Families with marker genotypes for more than 

one affected child and for parents 
Yes No 

 Sibships with marker genotypes for a single 
affected and unaffected child (no parental 
genotypes) 

Yes Yes 

 Sibships with marker genotypes beyond a single 
affected and unaffected child (no parental 
genotypes) 

Yes No 

Quantitative Independent Trios Yes Yes 
 Families with marker genotypes for more than 

one child and on parents 
Yes No 

 Sibships with marker genotypes for two children 
(no parental genotypes) 

Yes Yes 

 Sibships with marker genotypes for more than 
two children (no parental genotypes) 

Yes No 

1With the exception of methods that explicitly adjust for the correlation among siblings due to linkage 

Equally 
likely 

M2M2 
unaffected 

M1M2 
affected 

M1 
D 

M2 
N 

M1M2 
unaffected 

M2M2 
affected 

M2 
N 

M2 
N 

M2 
D 

M1 
N 

M2 
N 

M2 
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Extensions of TDT to Quantitative Traits 
 
The use of transmission disequilibrium tests has become a popular design for evaluating linkage and 
association for candidate genes.  A recent search of Pubmed yielded 638 citations since 1993.  In 
particular, 
 
• the TDT has been extended to quantitative traits  
 
• quantitative TDTs are based on whether parental transmissions are associated with the magnitude 

of the child's trait. 
 
• We'll cover two primary extensions: a permutation based test and a test based on a variance 

component model.  Each of these tests use heterozygous parents to avoid spurious associations 
due to population sub-structure. 

 
But first an example of association testing in a random sample of unrelated individuals: 
 
Example 6.5: Suppose we are studying a disease for which there is a quantitative trait, Y, that 
indicates progression to that disease.  Further, suppose we have collected genotype data for a diallelic 
candidate gene with allele A1 and A2 with the following properties: θ=0, QH and A1associated and 
Pr(A1)=Pr(QH)=0.5. 

Propose a test for association between the quantitative trait and the marker alleles.  What are some of 
the potential causes of association that will be detected by your test? 
 
 
 
 
 
 
 
 

A1A1 A1A2 A2A2
9.141 8.370 5.932
10.877 7.215 5.027
8.867 8.373 5.755
11.692 7.854 4.498
10.054 7.373 4.668
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Example 6.6: Illustration of spurious associated due to population sub-structure 
 
Now suppose that, unknown to you, the population is composed of an equal mixture of two sub-
populations with: 
 
• Pr(A1)=Pr(QH)=0.5 in population 1 
• Pr(A1)=Pr(QH)=0.1 in population 2 
• D=0 and θ=0.5 in each population 
 
If this was tested using an F-test from the corresponding ANOVA, F=9.058 (p=0.00017).   
 
Ignoring sub-structure, is there association? 
 
 
 
 
As with the original TDT, these types of spurious associations can be avoided by using transmissions 
from heterozygous parents to their offspring. 
 
A Permutation-based Transmission Disequilibrium for Quantitative Traits 
 
Consider the ith family with si children: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In 1997, Rabinowitz developed a test of linkage in the presence of association based on a score test 
for the regression of a child’s trait value on the sum of their transmission variables from heterozygous 
parents: 
 

ijijFiFijMiMij XXXXY εββ +
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with the test statistic based on F families 
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TR is asymptotically N(0,1) under the null hypothesis of no linkage.  If si=1 for all families, then TR is 
also asymptotically N(0,1) under the null hypothesis of no association. 
 
For the later case, statistical significance can also be assessed by permuting the transmissions from 
heterozygous parents. 
 
• Why is this true? 
 
 
 
 
 
• Why is this not true for families with multiple offspring? 
 
 
 
 
 
Correcting for Dependent Transmissions 
 
If the marker and QTL are linked, then transmissions among offspring are no longer independent. 
However, consider the numerator of the test statistic: 
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The expectation of Ui is 
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Under no linkage, what is E(Ui)? 
 
 
Under no association, what is E(Ui)? 
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Hence, the statistic  
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TQP is asymptotically N(0,1) under the null hypothesis of no linkage or no association regardless of 
the number of children per family. 
 
Example 6.7: Conditional on trait values for the children and genotypes for the family, what genotype 
configuration is equally likely under the null hypothesis of no association? 
 

OBSERVED
FAMILY

A1A2 A2A2

A1A2 A1A2
Y1 Y2

PERMUTED
FAMILY

A2A1 A2A2

Y1 Y2  
 
Compute the value of U for each family.  How do they compare?  How could this be used to assess 
significance in a permutation framework? 
 

Ho:  no linkage or no association 
 
Ha:  linkage AND association 
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The TQP test provides a model-free framework for testing for linkage and association.  Due to the 
Central Limit Theorem, the distribution of the test statistic is N(0,1) under the null hypothesis.  Note 
that  
 
 no assumptions are necessary regarding the mode of inheritance of the underlying QTL.   
 
While this provides a robust testing procedure, if information on the underlying mode of inheritance 
is available, then a more powerful test could be formed by using this information in a likelihood 
framework.  
 
Transmission Disequilibrium Test for Quantitative Traits in the Variance Components Framework 
 
General idea: the trait mean is modeled as a function of allelic effects for the marker under study 
while maintaining the same parameterization for the variance matrix. 
 
Set-up: 
 
For the jth offspring of the ith family, define the genotypes as 
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Then the trait mean can be modeled as 
 
 E(yij) = 
 
Recall, the variance matrix is  
 
 22

*
2

eAA IARV σσσ ++= . 
 
Assuming the vector of phenotypes, yi, for family i has a multivariate normal distribution, the 
likelihood for Nf families is: 
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To test for association, the likelihood ratio test can be used to evaluate whether βa=0.  This test will 
be affected by population substructure. 
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Extending Variance Components Analysis to Account for Population Stratification 
 
Fulker et al. (1999) proposed the following modification: 
 
 
 
 
 
 
 
 
 
Abecasis et al (2000) proved that 
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where µi, pi, qi are the phenotypic mean and the marker-allele frequencies for the population from 
which family i was drawn. N  is the total number of individuals with ni equal to the number of 
families from population i.  Note that Vb is the component of V due to between family allele effects. 
 
Hence, we can test for association in the presence of population stratification by evaluating whether 
βw=0.  It is of note that βb is a biased estimator of a and with this bias being a function of the 
unknown population stratification. 
 
 


