
ARTICLE IN PRESS
0022-5193/$ - se

doi:10.1016/j.jtb

�Correspond

fax: +1404 727

E-mail addr
Journal of Theoretical Biology 234 (2005) 201–212

www.elsevier.com/locate/yjtbi
Finding optimal vaccination strategies for pandemic influenza using
genetic algorithms

Rajan Patel�, Ira M. Longini Jr., M. Elizabeth Halloran

Department of Biostatistics, The Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA

Received 6 May 2004; received in revised form 23 September 2004; accepted 22 November 2004

Available online 20 January 2005
Abstract

In the event of pandemic influenza, only limited supplies of vaccine may be available. We use stochastic epidemic simulations,

genetic algorithms (GA), and random mutation hill climbing (RMHC) to find optimal vaccine distributions to minimize the number

of illnesses or deaths in the population, given limited quantities of vaccine. Due to the non-linearity, complexity and stochasticity of

the epidemic process, it is not possible to solve for optimal vaccine distributions mathematically. However, we use GA and RMHC

to find near optimal vaccine distributions. We model an influenza pandemic that has age-specific illness attack rates similar to the

Asian pandemic in 1957–1958 caused by influenza A(H2N2), as well as a distribution similar to the Hong Kong pandemic in

1968–1969 caused by influenza A(H3N2). We find the optimal vaccine distributions given that the number of doses is limited over

the range of 10–90% of the population. While GA and RMHC work well in finding optimal vaccine distributions, GA is

significantly more efficient than RMHC. We show that the optimal vaccine distribution found by GA and RMHC is up to 84%

more effective than random mass vaccination in the mid range of vaccine availability. GA is generalizable to the optimization of

stochastic model parameters for other infectious diseases and population structures.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Influenza is a major public health concern. Influenza
spreads rapidly in seasonal epidemics which cost society a
considerable amount in terms of health care expenses, lost
productivity, and loss of life. Globally, influenza annually
costs from $71 and $167 billion and results in 250000 and
500000 deaths (World Health Organization, 2004).
Annual influenza epidemics occur partially due to strains
of influenza genetically drifting from year to year. The
influenza vaccine produced before the influenza season is
targeted against the strains that are predicted to circulate
in the coming season. However, a major antigenic shift
can occur with little warning, resulting in pandemic
e front matter r 2005 Elsevier Ltd. All rights reserved.
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influenza (Kilbourne, 1975). The two most recent
pandemics were the ‘‘Asian Flu’’ A (H2N2) of
1957–1958 (Elveback et al., 1976; Jordan, 1961; Longini
et al., 1978) and ‘‘Hong Kong Flu’’ A (H3N2) of
1968–1969 (Davis et al., 1970; Elveback et al., 1976;
Longini et al., 1978; Sharrar, 1969). The Asian Flu is
estimated to have caused 70000 deaths in the US, while
the Hong Kong Flu is estimated to have caused 34 000
deaths in the US. In addition, the Hong Kong pandemic
of 1968–1969 is estimated to have cost society 3.8 billion
dollars in the US alone (Kavet, 1972). Should a major
antigenic shift occur, there may be time to produce only a
limited amount of vaccine efficacious against the new
strain and ensuing pandemic. Knowledge on how to
distribute the limited supply of vaccine optimally among
different age groups would help us to minimize the impact
of the epidemic. This impact can be measured in many
ways, two of which are number of illnesses and loss of life.

www.elsevier.com/locate/yjtbi
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Optimization methods have been developed for
deterministic simulation models (Anderson and May,
1991; Greenhalgh, 1986; Hethcote and Waltman, 1973;
Wickwire and Guest, 1976), and optimization studies
have been done to find the vaccine distributions for
influenza using a simple deterministic model (Longini et
al., 1978). However, they have not been done with more
complex stochastic simulation models. Influenza is
transmitted in a complex way from person to person.
In addition, given an introduction of influenza into a
population, the probability of a major epidemic and the
possible size of an epidemic are highly variable. Thus,
the mathematical models for influenza epidemics should
have a detailed contact structure and be stochastic. In
addition, the epidemic process is non-linear since the
incidence of new infections depends on the current
number of both infectives and susceptibles in the
population at a particular time. All of these factors
make optimization based on traditional gradient meth-
ods, such as the Newton–Raphson method, difficult or
even prohibitive. Robbins and Munro (1951) developed
a stochastic approximation method whose convergence
is guaranteed under mild conditions. The method,
however, requires knowledge of the analytic gradient
of the considered objective function (Weisstein, 2004).
Kiefer and Wolfowitz (1952) developed an extension to
the Robbins–Munro algorithm. However, in terms of
simulation optimization, the drawback to both of these
methods remains the unavailability of gradients. In the
case of our stochastic simulation multi-dimensional
optimization problem, we consider genetic algorithms
(GA) and random mutation hill climbing (RMHC) as
stochastic optimization methods.

In this paper, we find optimal distributions of a
limited supply of vaccine in the event of pandemic
influenza generated by a stochastic simulation model
using GA (Holland, 1975) as well as RMHC (Forrest
and Mitchell, 1993). We configure the model to simulate
the baseline illness attack rates consistent with the past
patterns of Asian and Hong Kong pandemic influenza.
We find optimal vaccine distributions in terms of
minimizing influenza illness or death. These optimiza-
tion methods are generally applicable to other infectious
diseases and population structures.
(B)

Fig. 1. Structure of the populations. (A) The 2000 person communities

consist of households embedded in neighborhoods. Each community is

partitioned into four neighborhoods. Small children mix in playgroups

and daycare centers within their neighborhoods. The school mixing

groups link neighborhoods as shown. (B) Five communities are linked

to create a larger population of size 10 000 people. This linkage is done

by allowing adults who work to be randomly assigned to work in

mixing groups of size 25 throughout the whole population.
2. Methods

2.1. The simulation model

We use a discrete time, stochastic simulation model of
influenza spread within a structured population of
10 000 individuals to estimate the effectiveness of
various distributions of a given amount of vaccine. This
model is a direct extension of an earlier model developed
for influenza intervention studies (Halloran et al., 2002a;
Longini et al., 2004). The model simulates the stochastic
spread of influenza in a population where the age and
family structure approximate information from the US
Census 2000. The 10 000 person population consists of
five 2000 person communities each containing four
neighborhoods, one high school, one middle school, and
two elementary schools (Fig. 1A). Pre-school children
visit either a small play group or a large day care center.
Working adults make contact in workplaces. Individuals
can thus come into contact with other members of their
own family (household contacts), people at school or
work, and others in their neighborhood and community,
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each group with its own transmission probability
depending upon the age of the individual. Influenza
can spread among communities by workplace contacts
(Fig. 1B). Each day, for each susceptible individual, the
probability of becoming infected is calculated based on
that individual’s vaccination status, the vaccination
status of the individual’s contacts, and the group-
specific transmission probabilities. Influenza is intro-
duced into the population by randomly assigning 12
initial infectives in each of the five communities. The
initial infectives are omitted from attack rate calcula-
tions.

People who become infected enter the latent period
and incubation period (1.9 days mean length) during
which they are not infectious and do not show
symptoms. This is followed by the infectious period
(4.1 day mean length) during which they may show
influenza symptoms. In the model, if an individual
shows symptoms, he may withdraw to the home after 1
day of infectiousness with some probability, then
coming into contact with only other members of his
household. More details on the model can be found in
previous publications (Halloran et al., 2002b; Longini
et al., 2004).

We run the optimization algorithm with two basic
attack rate patterns. We calibrate the baseline epidemic
(all individuals are unvaccinated) to have age-specific
illness attack rates similar to the 1957–1958 A (H2N2)
Asian influenza pandemic. We will refer to this as Asian-
like influenza for the rest of this paper. We also calibrate
the baseline epidemic to the 1968–1969 A (H3N2) Hong
Kong influenza pandemic. We will refer to this as Hong
Kong-like influenza for the rest of this paper. Table 1
shows the illness attack rates from the literature. Asian-
like influenza had the highest illness attack rate in school
children, followed by preschool children with adults
Table 1

Model specifications

Age groups Pre-

school

School Young

adults

Middle

adults

Old

adults

Age (years) 0–4 5–18 19–50 51–64 65+

Group size (%)

(10 000 people)

6.80 20.40 46.24 14.09 12.47

Deaths per

10 000 illnessesa
0.263 0.210 2.942 2.942 199.8

Target illness

attack rates (%)

Asian-like

influenzab

35.2 55.4 24.6 19.9 13.9

Hong Kong-

like influenzac
34.8 34.8 34.6 32.2 30.5

aLongini et al., 2004; Thompson et al., 2003.
bElveback et al., 1976; Jordan, 1961; Longini et al., 1978.
cDavis et al., 1970; Elveback et al., 1976; Longini et al., 1978;

Sharrar, 1969.
having a lower attack rate. In contrast, Hong Kong-like
influenza had a relatively flat attack rate across age
groups.

In our simulations, vaccination of the population
occurs before the influenza pandemic begins so that
vaccinated people will develop immunity. Thus, all of
the available doses of the vaccine will be administered
before influenza begins to spread in the population. We
assume that the vaccine efficacy for susceptibility is
VES ¼ 0:70 and the vaccine efficacy for infectiousness is
VEI ¼ 0:80 (Belshe et al., 1998, 2000a, b; Longini et al.,
2000).

2.2. The optimization problem

The optimization problem is as follows: Given a
limited quantity of influenza vaccine and a particular
population structure and illness attack rate pattern for a
single wave of pandemic influenza, what proportion of
each age group should be vaccinated to minimize the
impact of the epidemic?

We divide the population into five age groups: pre-
school, school, young adults, middle aged adults, and
old adults, that are indexed as i ¼ 1; . . . ; 5: We let ni be
the number of individuals in age group i, and the total
population size is n ¼

P5
i¼1 ni: We let si be the average

illness attack rate in age group i, i.e. proportion of both
vaccinated and unvaccinated people in age group i that
get infected and become ill over the course of the
epidemic. The average is over a predetermined number
of simulated series for each vaccination distribution. We
let V be the total number of vaccine doses available
before day one of the epidemic, and vi the proportion of
age group i that is vaccinated before day one of the
epidemic. Then, Q ¼

P5
i¼1 nivi is the total number of

doses distributed, where QpV ; since we cannot use
more vaccine than there is available. We assume that
each person vaccinated receives one dose of vaccine.
Also, define the array v ¼ ðv1; . . . ; v5Þ as the control
vector. We refer to vi=ni as the vaccine coverage in age
group i, and V=n as the total vaccine coverage for the
population. To reflect the impact of a single illness, we let
wi be the weight assigned to an illness in each age group
for minimization of the loss function. Then, the
optimization problem is expressed as the minimization of

X5

i¼1

siniwi; (1)

such that

X5

i¼1

vinipV : (2)

We concentrate on minimizing overall illness in the
population as well as number of lives lost given a
predetermined number of doses V of vaccine. We find
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unique optimal distributions of the vaccine for varying
numbers of doses of available vaccine, V as well as
different weights, wi; based on our objective function.
Thus, for each combination of V and set of weights, wi;
we obtain and solve a unique optimization problem. We
will refer to the control vector v that minimizes (1) as the
optimal vaccine distribution for the given number of
doses V and weights wi:

2.3. The genetic algorithm

A GA is an algorithm which can find approximate
solutions by using an approach inspired by the
biological processes of reproduction natural selection.
The general GA will begin with an initial set of
randomly generated individuals. An individual is a set
of parameters that are a candidate solution to the
optimization problem and can be evaluated by some
fitness function. We can refer to the parameters as genes.
The individuals in each generation are evaluated and
sorted based on a fitness function. A second pool of
individuals is generated by repeatedly selecting a pair of
good individuals from the previous generation and
breeding them using the biological principles of inheri-
tance and mutation. This subsequent generation of
individuals can then be evaluated by the fitness function,
and the process can repeat. There are many variations to
the typical GA, and we introduce a simple implementa-
tion which will render near-optimal vaccine strategies
given a stochastic simulation model.

We define an individual, vG; which consists of the
parameters,

fvG1; vG2; vG3; vG4; vG5g; (3)

as a distribution of the V doses of vaccine among the 5
age groups such that (2) is satisfied at equality. The
fitness function we implement calculates the estimated
number of illnesses or number of lives lost, depending
on our objective, when pre-vaccinating the population
according to the vaccine distribution given by vG:

The algorithm is as follows:
Initialization
1.
 Randomly generate an initial set of 50 individuals.
We generate the initial pool of individuals such that
(3) is randomly determined for each individual under
the condition that (2) is satisfied at equality.

Iteration
2.
 Evaluate each of the 50 individuals in the pool by
pre-vaccinating the proportion of the population
according to the individual being evaluated, then
running the stochastic simulator 20 times. The
resulting fitness of each individual is the mean of

X5

i¼1

siniwi (4)

over the 20 runs of the simulator. A smaller value of
this fitness function represents a more fit individual,
as this fitness function is essentially a loss function.
3.
 Sort the 50 individuals according to their fitness.

4.
 We select the best 25 individuals from the current

generation and pass them directly to the next
generation of individuals. We do this to ensure that
no subsequent generation takes a step backwards and
consists of less fit individuals than the previous
generation. We generate the remaining 25 individuals
by breeding randomly selected pairs from the
previous generation. We use a deterministic tourna-
ment selection method repeatedly to select maternal
and paternal individuals to breed. The breeding
process is implemented as follows.
(a) We randomly select a paternal individual using

the following deterministic tournament selection
method with tournament size equal to 10. We
randomly select 10 individuals from the current
generation and sort them based on their mea-
sured fitness. We select the best individual out of
those 10 to serve as a paternal individual for
purpose of breeding.

(b) We then randomly select a maternal individual in
the same manner. We disallow the previously
selected paternal individual from inclusion in the
tournament so that the same individual cannot
breed with himself. We are able to increase and
decrease selection pressure (bias of selecting
better individuals) by increasing and decreasing
the tournament size, respectively. After some
trials, we determined that a tournament size of 10
generates an adequate amount of selection
pressure.

(c) We generate a child, vC ; by breeding the two
randomly selected individuals above. We denote
these parents as vM and vF : We use a uniform
crossover breeding method with a mixing ratio of
80%. Thus, there is an 80% probability that the
child will inherit a specific gene from the father,
and 20% probability that the child will inherit
that gene from the mother. Inheritance of each
gene is independent from any other gene. The
80:20 mixing ratio was suggested as optimal by
Spears and De Jong (1990) when using the
uniform crossover mixing method.

(d) We begin the breeding by assigning:

8i v
ð1Þ
Ci ¼

vMi; with probability 0.8;

vFi; with probability 0.2:

(
(5)
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(e) Since vð1ÞC likely does not satisfy (2) at equality, we
must add or subtract doses from randomly
selected age groups. This process serves two
processes. First it ensures that the child satisfies
(2), and secondly it introduces a mutation step
into the breeding procedure. Mutation allows
genetic diversity to pass from one generation to
the next.

(f) We iteratively update vðjÞC by randomly selecting
one age group i at each iteration and updating it
in the following manner until v

ðjÞ
C satisfies (2) at

equality:

v
ðjþ1Þ
Ci ¼

v
ðjÞ
Ci þ

min V�
P5

i¼1
v
ðjÞ

Ci
ni ;ð1�v

ðjÞ

Ci
ÞniðV�QÞ=5

� �
ni

if QoV ;

v
ðjÞ
Ci �

min
P5

i¼1
v
ðjÞ

Ci
ni�V ;vðjÞ

Ci
ni ;ðQ�V Þ=5

� �
ni

if Q4V :

8>><
>>:

ð6Þ

The inclusion of ðQ � V Þ=5 (mutation para-
meter) into the min function of (6) allows us to
control how far each of the vCi can stray from the
respective parameter of the parent from which it
was obtained. The inclusion of this specific
mutation parameter requires about five relatively
small repairs to be made to the genes of the new
child. The number of repairs is directly related to
the denominator of the parameter, while the size
of the mutation of each gene is inversely related
to the denominator of the mutation parameter.
The GA literature provides several methods to
perform a constrained crossover breeding includ-
ing the ‘‘repair’’ algorithm used here. The main
drawback of repair algorithms is cost in terms of
running time (Orvosh and Davis, 1993). How-
ever, the bulk of the running time of our
optimization is involved with evaluating each
individual, as our influenza simulator takes
approximately 2 seconds to run and we run the
simulator 20 times in evaluating each individual.
Thus the relative time cost of breeding is
negligible, thus we elected to use the simpler
repair algorithm as described here.

5. We generate 25 children in a similar manner to
fill the next generation of individuals. We allow
previously selected maternal and paternal indivi-
duals to be used again to breed more children.
Convergence
6.
 We repeat this process from Step 2 to Step 5 until the
best individual does not change for four consecutive
generations. The best individual in the final genera-
tion will yield the optimal vaccine distribution given
the quantity of available influenza vaccine, the
particular population structure, the illness attack rate
pattern, and the objective of the optimization.

2.4. Random mutation hill climbing

We compare the GA approach to another optimiza-
tion approach, RMHC, which may converge more
quickly (Forrest and Mitchell, 1993; Mitchell et al.,
1994). The RMHC algorithm finds an optimal indivi-
dual from an initial randomly generated individual by
attempting different modifications of the initial indivi-
dual and calculating the fitness of each modification in a
similar manner to the GA. Once a modification of the
individual is found that has a better fitness than the
original, that individual replaces the original and
modifications of the new individual are considered. We
continue until several modifications of the current
individual fail to yield a better individual than the
current one. The algorithm works in the following
manner:
Initialization
1.
 Generate a random individual vA as defined in the
GA approach which satisfies (2) at equality.
2.
 Evaluate vA by pre-vaccinating the proportion of the
population according to vA running the stochastic
simulator 20 times. The resulting fitness of vA is the
mean of

X5

i¼1

siniwi (7)

over the 20 runs of the simulator.

Iteration
3.
 Randomly mutate vA by first creating a copy of vA;
vð1ÞB ; and mutating vð1ÞB in the following manner:
(a) Select one age group, i, at random, and set

v
ð1Þ
Bi ¼ vAi þ U ; (8)

where U is randomly chosen from a Uni-
formð0; 1 � vAiÞ distribution. A Gaussian distribution
is commonly used to mutate continuous genes,
however we noticed no difference in the quality of
resulting individuals and running time of the algo-
rithm using the uniform distribution. The advantage
of using a uniform distribution in this case is that its
possible values are bounded so that we do not require
artificial clipping to ensure a gene remains in the [0,1]
range. We must now ‘‘repair’’ the individual to
satisfy (2). The repair method is unnecessary in
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Forrest and Mitchell’s RMHC algorithm (Forrest
and Mitchell, 1993) as they dealt with unconstrained
optimization.
(b) We iteratively update v

ðjÞ
B by randomly selecting

one age group i at each iteration and updating it in
the following manner until vðjÞB satisfies (2) at equality.
Let Q ¼

P5
i¼1 v

ð1Þ
Bi ni:

v
ðjþ1Þ
Bi ¼ v

ðjÞ
Bi �

minð
P5

i¼1v
ðjÞ
Bini � V ; vðjÞBini; ðQ � V Þ=5Þ

ni

:

(9)

(c) The result of this process yields vB which
satisfies (2) at equality and thus is a valid individual.
4.
 Determine the fitness of vB by calculating the mean of
(4) over 20 runs of the simulator under vB:
5.
 If vB is as fit as or more fit than vA; then we replace vA

with vB and begin the mutation process again. If vA is
more fit than vB; we retain vA and try another mutation.

Convergence
6.
 We continue this process until 100 consecutive muta-
tions of vA do not reveal a more fit individual than vA:

2.5. Parameter values

We calibrated the simulation model for two different
potential pandemic influenza illness attack rate patterns
due to Asian-like and Hong Kong-like influenza. We
varied the transmission probabilities to produce roughly
the illness attack rates shown in the Table 1.

We ran the optimization routines for a range of V

such that we had 10–90% overall vaccine coverage in the
population. We ran the optimization minimizing overall
illness as well as minimizing overall death. We use
weights of one, i.e. wi ¼ 1; i ¼ 1; . . . ; 5; for the minimiz-
ing illness objective function, and we used the influenza
death rates, i.e. w1 ¼ 0:263; w2 ¼ 0:210; w3 ¼

2:942; w4 ¼ 2:942; w5 ¼ 199:8; for the minimizing
death objective function. When minimizing illness, the
illnesses in each age group have the same weight.
However when minimizing death, we weight each illness
by the approximate number of deaths per 10 000
illnesses in each age group (Longini et al., 2004). This
varies significantly such that the death rate in older
adults is almost 1000 times as large as that of children.
3. Results

3.1. Optimal vaccine distributions

Tables 2–5 show the results given by the GA. The
results from RMHC are similar to those from the GA,
and are thus not in the tables. For example, the RMHC
result for the Asian-like flu case when minimizing
illness attack rate and V=n ¼ 0:40 is v ¼

ð0:88; 1:00; 0:21; 0:26; 0:00Þ: We do not expect exact
results from each algorithm as the results are approx-
imations of the optimal distributions. The two algo-
rithms converging to significantly different distributions
of the vaccine may suggest different local optima,
however, we did not encounter this case.

Table 2 gives optimal vaccine distributions for an
Asian-like influenza epidemic when minimizing the
illness attack rate. When no vaccine is available
(V=n ¼ 0Þ; the simulated illness attack rate pattern is
similar to the target baseline given in Table 1. When we
have enough vaccine to vaccinate 10% of the population
(V=n ¼ 0:10), the GA and RMHC optimization algo-
rithms converge to an optimal vaccine distribution
where only school children should be vaccinated. With
20% vaccine coverage, we can effectively stop the
epidemic as we are able to vaccinate 98% of school
children, surpassing the critical vaccination fraction as
described in Hill and Longini (2003). With coverages
higher than 20%, it is optimal to begin vaccinating pre-
school children, followed by young and middle aged
adults, and finally older adults. After a vaccine coverage
of 20%, we experience diminished returns for each
additional dose of vaccine available. Although the
spread of the influenza agent has effectively stopped,
these additional doses of vaccine still prevent some
additional cases of influenza.

Table 3 gives optimal vaccine distributions when
minimizing the overall number of deaths in the
population. When there is enough vaccine to vaccinate
10% of the population, the optimization algorithms
suggest vaccinating only older adults. However, when
V=n ¼ 0:20; we are able to achieve a vaccine distribution
which can prevent the epidemic. This distribution
suggests vaccinating mainly school-aged children, as
they are the most potent group of Asian-like influenza
spreaders. As the amount of available vaccine increases,
we begin to vaccinate the older adults, followed by pre-
school children and finally young adults and middle-
aged adults.

Table 4 gives optimal vaccine distributions as found
by the GA under the scenario of a Hong Kong-like
influenza pandemic and with the goal of minimizing the
illness attack rate. At a vaccine coverage of 10%
(V=n ¼ 0:10), the optimization algorithms suggest vac-
cination of school-age children and young adults. As
more vaccine becomes available, pre-school children and
middle-age adults should be vaccinated, and finally,
older adults should receive vaccine. Unlike the optimal
vaccination distributions in the Asian-like influenza
case, the optimal vaccine distributions in the Hong
Kong-like influenza case are more spread out among the
age groups, as no single group is responsible for a
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Table 2

Optimal vaccine distributions for minimizing illness (Asian-like influenza)

Coverage (%) Optimal vaccine distribution Illness attack rate

PSa S YA MA OA PS S YA MA OA AVEb

0 0.00 0.00 0.00 0.00 0.00 0.338 0.559 0.238 0.223 0.160 0.299

10 0.00 0.49 0.00 0.00 0.00 0.182 0.221 0.127 0.118 0.081 0.143

20 0.00 0.98 0.00 0.00 0.00 0.144 0.134 0.101 0.092 0.065 0.105

30 0.51 1.00 0.10 0.12 0.00 0.021 0.012 0.025 0.022 0.017 0.021

40 0.92 1.00 0.22 0.22 0.00 0.008 0.010 0.016 0.015 0.012 0.014

50 0.94 1.00 0.35 0.46 0.07 0.007 0.009 0.011 0.009 0.009 0.010

60 1.00 1.00 0.48 0.69 0.09 0.005 0.009 0.008 0.006 0.008 0.008

70 1.00 1.00 0.73 0.61 0.03 0.004 0.007 0.005 0.005 0.006 0.006

80 1.00 1.00 0.86 0.80 0.13 0.004 0.007 0.003 0.004 0.005 0.005

90 1.00 1.00 1.00 0.97 0.25 0.004 0.007 0.002 0.002 0.004 0.004

100 1.00 1.00 1.00 1.00 1.00 0.004 0.007 0.002 0.002 0.002 0.003

aPS, S, YA, MA, OA abbreviate the 5 age-groups defined in Table 1.
bAVE represents the average rate over 100 simulations given the specified vaccine distribution.

Table 3

Optimal vaccine distributions for minimizing death (Asian-like influenza)

Coverage (%) Optimal vaccine distribution Death rate ð	10 000Þ

PS S YA MA OA PS S YA MA OA AVE

0 0.00 0.00 0.00 0.00 0.00 0.089 0.117 0.701 0.657 32.02 4.440

10 0.00 0.00 0.00 0.00 0.80 0.085 0.116 0.652 0.605 13.57 2.108

20 0.00 0.86 0.00 0.03 0.15 0.017 0.006 0.133 0.120 5.091 0.716

30 0.00 0.88 0.01 0.22 0.68 0.013 0.005 0.099 0.078 2.216 0.335

40 0.32 1.00 0.06 0.17 1.00 0.007 0.002 0.066 0.056 0.837 0.144

50 0.48 0.93 0.19 0.45 1.00 0.004 0.003 0.047 0.035 0.667 0.111

60 1.00 1.00 0.23 0.69 1.00 0.001 0.002 0.034 0.019 0.521 0.084

70 0.92 1.00 0.39 0.92 1.00 0.002 0.002 0.025 0.012 0.450 0.070

80 1.00 1.00 0.62 0.84 1.00 0.001 0.002 0.016 0.011 0.376 0.056

90 1.00 1.00 0.85 0.78 1.00 0.001 0.002 0.010 0.010 0.328 0.047

100 1.00 1.00 1.00 1.00 1.00 0.001 0.001 0.007 0.006 0.318 0.044

Table 4

Optimal vaccine distributions for minimizing illness (Hong Kong-like influenza)

Coverage (%) Optimal vaccine distribution Illness attack rate

PS S YA MA OA PS S YA MA OA AVE

0 0.00 0.00 0.00 0.00 0.00 0.343 0.352 0.352 0.337 0.278 0.340

10 0.00 0.19 0.13 0.00 0.00 0.263 0.226 0.247 0.253 0.212 0.240

20 0.12 0.40 0.20 0.13 0.00 0.154 0.116 0.154 0.154 0.135 0.144

30 0.00 0.28 0.44 0.28 0.00 0.098 0.078 0.063 0.068 0.068 0.070

40 0.28 0.53 0.49 0.34 0.00 0.039 0.028 0.032 0.034 0.035 0.032

50 0.33 0.63 0.58 0.57 0.00 0.025 0.015 0.017 0.017 0.022 0.018

60 0.65 0.79 0.74 0.37 0.00 0.012 0.008 0.010 0.015 0.016 0.011

70 0.83 0.89 0.76 0.80 0.00 0.007 0.006 0.008 0.006 0.013 0.008

80 0.88 0.90 0.96 0.80 0.00 0.006 0.005 0.004 0.005 0.011 0.006

90 1.00 1.00 1.00 1.00 0.20 0.004 0.003 0.003 0.003 0.008 0.004

100 1.00 1.00 1.00 1.00 1.00 0.003 0.003 0.003 0.003 0.002 0.003
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Table 5

Optimal vaccine distribution for minimizing death (Hong Kong-like influenza)

Coverage (%) Optimal vaccine distribution Death rate ð	10 000Þ

PS S YA MA OA PS S YA MA OA AVE

0 0.00 0.00 0.00 0.00 0.00 0.090 0.074 1.039 0.992 55.56 7.570

10 0.00 0.00 0.00 0.00 0.80 0.080 0.066 0.900 0.862 22.66 3.383

20 0.00 0.16 0.08 0.05 1.00 0.060 0.043 0.644 0.622 11.45 1.827

30 0.00 0.35 0.10 0.41 1.00 0.036 0.021 0.374 0.274 6.172 0.988

40 0.13 0.36 0.26 0.53 1.00 0.017 0.011 0.163 0.119 3.015 0.472

50 0.25 0.53 0.42 0.41 1.00 0.009 0.005 0.078 0.072 1.724 0.263

60 0.56 0.53 0.51 0.67 1.00 0.004 0.003 0.047 0.037 1.047 0.158

70 0.09 0.62 0.74 0.70 1.00 0.006 0.003 0.028 0.027 0.897 0.130

80 0.70 0.84 0.73 0.84 1.00 0.002 0.001 0.022 0.016 0.751 0.106

90 1.00 0.61 1.00 0.86 1.00 0.001 0.002 0.011 0.014 0.551 0.076

100 1.00 1.00 1.00 1.00 1.00 0.001 0.001 0.010 0.009 0.448 0.062
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majority of the illnesses. We are unable to obtain an
optimal vaccination distribution to prevent an epidemic
until we have approximately 40% coverage, as opposed
to only 20% coverage in the Asian-like influenza case.
We begin seeing increasingly diminished returns on each
additional dose of vaccine after about 40 or 50%
coverage.

Table 5 gives optimal vaccine distributions for a Hong
Kong-like influenza when we minimize the number of
deaths. The optimal vaccination distributions suggest
vaccinating older adults when coverage is low
(V=n ¼ 0:10). As more vaccine becomes available, it is
optimal to give vaccine to school-children, young adults,
and middle-age adults relatively evenly. We do not
experience a shift in the age-group for which it is
optimal to vaccinate as we do in the Asian-like influenza
case when minimizing the number of deaths. This
difference occurs because in the Hong Kong-like
influenza setting, we are unable to stop the epidemic
early with high vaccine coverage in one of the age-
groups because the virus spreads more homogeneously
than it does in the Asian-like influenza setting.

The effectiveness of the optimal vaccine distributions
for Asian-like influenza when compared to random mass
vaccination of the entire population is given in Table 6.
For a given overall vaccine coverage level, we compare
the overall illness attack rates and death rates for the
optimal vaccination distribution with those if the
vaccine were randomly distributed. We use the relative
overall effectiveness comparing the two vaccination
strategies as our measure of how much better the
optimal vaccine distribution is than is random vaccina-
tion. Thus, we define the relative overall effectiveness
(Halloran et al., 1999) as ¼ 1 �

indexopt

indexran
; where indexopt is

either the illness attack rate or death rate when the
optimal vaccination distribution is used and indexran is
the complementary index when random vaccination is
used. For example, from Table 6, implementation of the
optimal vaccine distribution given 30% coverage, is
84% more effective than random vaccination. For both
objective functions, the effectiveness of the optimal
vaccine distributions compared to random vaccination
is highest at coverage levels 20–70% and peaks around
30–40%.

3.2. Algorithm convergence

Neither GA nor RMHC optimization algorithms are
guaranteed to converge to exactly the optimal vaccine
distribution. The randomness of each algorithm and the
difficulty of the optimization problem allows us to
expect only an approximation of the optimal vaccine
distribution. The results we present in this analysis
may or may not be optimal in the sense that there exists
no better distribution of the vaccine. However, we
present approximations of the optimal distribution
suggested by these algorithms. It is unlikely that
vaccination of an age group not suggested by any of
the optimizations will result in a better distribution of
the vaccine.

Both algorithms did converge to a similar distribution
of the vaccine, however GA converged much more
quickly than did RMHC for almost all of the possible
vaccine coverages, all optimization criteria, and for both
types of influenza strain that we considered. Table 7
shows the number of simulations for each algorithm to
converge in the Asian-like influenza case for one run of
the algorithm for each of the vaccine coverages
considered. Each run of the stochastic simulation takes
approximately 2 seconds on a Pentium 4 1.6GhZ
machine with 256MB RAM. We run the simulation
20 times in evaluating the fitness of each individual, each
individual takes approximately 40 seconds to evaluate.
Evaluation of the individuals was the overwhelmingly
predominant time cost with both the GA and RMHC
algorithms.
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Table 6

Asian-like influenza optimal strategy effectiveness

Coverage (%) Minimize illness Minimize deaths

Optimal strategy

illness attack ratea
Random vaccination

illness attack rate

Overall

effectivenessb
Optimal strategy

death ratec
Random vaccination

death rate

Overall

effectiveness

0 0.299 0.299 4.440 4.440

10 0.143 0.240 0.404 2.108 3.299 0.361

20 0.105 0.184 0.429 0.716 2.297 0.688

30 0.021 0.133 0.842 0.335 1.505 0.777

40 0.014 0.082 0.829 0.144 0.867 0.834

50 0.010 0.043 0.767 0.111 0.438 0.747

60 0.008 0.023 0.652 0.084 0.218 0.615

70 0.006 0.012 0.500 0.070 0.132 0.470

80 0.005 0.008 0.375 0.056 0.085 0.341

90 0.004 0.005 0.200 0.047 0.061 0.230

100 0.003 0.003 0.044 0.044

aWe run the simulator 100 times for each strategy and present the mean overall attack rates.
bWe calculate the effectiveness of implementing the optimal vaccine distribution strategy compared to completely random mass vaccination in the

case of an Asian-like influenza pandemic. Effectiveness ¼ 1� Indexopt=Indexrand:
cDeath rate is represented as deaths per 10 000 people.

Table 7

Number of simulations for convergencea (Asian-like Influenza)

Coverage (%) Genetic algorithm Random mutation hill climbing

Minimize illness Minimize death Minimize illness Minimize death

10 1000 1000 860 740

20 1000 2500 27460 29430

30 3500 4500 66390 54090

40 3500 5500 148500 162530

50 2500 4500 75880 82340

60 3500 4000 89220 54530

70 2500 3500 108040 76940

80 2500 4000 63790 94380

90 1500 2000 850 1430

aThe number of simulations until the optimal solution is found. Additional simulations are required for convergence to be determined, however

this is the same for both GA and RMHC.
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The GA is said to have converged if the best
individual of the current pool does not change for four
consecutive generations. The RMHC is said to have
converged if the current individual does not change for
100 consecutive iterations. The convergence require-
ments are thus equivalent in terms of number of
individuals evaluated after the optimal individual has
been found. We can be confident, from the results in
Table 7, that the GA converges more quickly than
RMHC in this stochastic modelling implementation
based on the large difference in convergence rates
between the two algorithms, even though we do not
have replications under each scenario. It would be
possible to run the algorithm many times for each
coverage and baseline attack rate calibration and
determine a mean and variance for the number of
simulations required for convergence. However this was
impractical in this situation as some runs of the RMHC
algorithm may take up to 90 hours to complete. Mitchell
et al. (1994) give a good comparison of the convergence
between GA and RMHC and gives examples where one
outperforms the other. It seems that the type of
optimization that we encounter here is best suited
for GA.
4. Discussion

The optimal vaccine distribution is sensitive to the
nature of the spread of the influenza agent, the objective
for control, and also the amount of vaccine available.
GA, as well as RMHC, in conjunction with a properly
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calibrated simulation model would allow us to obtain an
approximation of the optimal vaccine distribution given
that we understand the behavior of the next pandemic
agent and that we determine an objective for the control
of the agent.

It is of interest to compare the optimal distribution of
vaccine obtained in our analysis with the recommended
policies of the Centers for Disease Control and
Prevention (CDC). For Interpandemic influenza, the
CDC recommends routine vaccination of all people
aged X50; people at risk for influenza-related complica-
tions, and people who could transmit to others at high
risk (Harper et al., 2004), regardless of the transmission
patterns of the currently circulating strains. The pan-
demic influenza policy has not been fully established.
However, during the swine influenza pandemic scare of
1976, efforts were made to mass vaccinate as many
people as possible, with adults being vaccinated first
(Neustadt and Fineberg, 1983). The mass vaccination
campaign was halted after 40 million adults were
vaccinated, a small number of which appeared to have
developed vaccine-related Guillain–Barré syndrome. In
addition, there was no real evidence that the swine
influenza pandemic would materialize. We suspect that
the real operational CDC pandemic influenza vaccina-
tion policy could follow the previous policy of 1976, and
thus, we use random mass vaccination available
quantities as the basis for comparison with the optimal
policy.

We have shown that the optimal vaccine distributions
are highly effective, especially when compared to
random mass vaccination. Implementation of the
optimal vaccine distribution for Asian-like pandemic
influenza was found to be 84% more effective than
random vaccination when there was only enough
vaccine for 30% of the entire vaccination and the
objective was to minimize illness. This optimal vaccina-
tion strategy involved concentrating vaccine in children,
with the leftover vaccine going to middle aged adults. In
this situation, given a population of 280 million people,
we would be able to prevent 31 million illnesses
following the optimal vaccination strategy rather than
random mass vaccination. In the case of an actual
pandemic, it will be critical to isolate the viral strain
quickly to construct a vaccine, to identify quickly the
age-specific attack rate pattern and finally to implement
an optimal vaccination control strategy.

To control pandemic influenza with vaccines, we must
isolate the pandemic influenza strain quickly as it is
unlikely that pre-manufactured vaccine will be effective
(Fedson, 2003). We assume that early isolates of the new
pandemic strain would provide the seed strains for
making vaccine that would be antigenically well
matched to the wild circulating strain. Thus, we assume
that this vaccine would have similar efficacy to the
current interpandemic vaccines that are generally well
matched to the circulating wild strains each year.
However, it is possible the match between a hastily
constructed vaccine and circulating pandemic strain
may not be good, especially if the wild virus undergoes
mutation after the first wave at the emergence site. A
sensitivity analysis on the assumed vaccine efficacy is a
subject for future work. Our simulation model and
optimization problem does not consider the efficacy of
the distributed vaccine against future strains of the
virus, nor does it consider the efficacy of repeated
annual vaccination (Smith, 1999). We only consider the
spread of a single strain of influenza and a vaccine that
is effective against that strain.

The community on which we based our simulations
consists of 10 000 people. The population is constructed
to represent a cross-section of a typical American
community. It represents the social connections that
are responsible for the transmission of influenza and is
not meant to be taken literally as a disconnected
population. The model averages over a great deal of
the social structure of the actual population that we are
attempting to model. However, we are interested in
simulating the effects of vaccination on the age-specific,
final illness attack rates, and not the intricate transient
dynamics of influenza epidemic. Thus, we believe that
the relatively simple social structure modelled is ade-
quate for the purposes of the analysis carried out here. In
addition, since the influenza season generally lasts for
about 4 months, usually between December and April of
each year, actual epidemics occur in subpopulations and
regions of the country at different times. We have not
attempted to model this pattern for the whole country. If
we assume that the epidemics spread to virtually the
whole country with relative uniformity by the end of the
season, then the optimal vaccination distributions that
we obtain should be generalizable to the whole US
population of 281 million people (Longini et al., 2004).

Some concerns about use of GA as an optimization
tool are the amount of computer time it takes for one
run. The GA may take three hours to give a good
approximation of an optimal vaccine distribution under
our current simulation model. The computer running
time of GA has an OðnÞ relation to the running time of
the stochastic simulator. Hence, the GA will converge
more slowly at a linear rate with increasing complexity
and running time of the stochastic epidemic simulator.
However, as the number of control variables to be
optimized grows, the convergence of the GA may take
exponentially longer. We will learn about the applic-
ability of GA to larger numbers of control variables in
the setting of a stochastic simulator as we use it for
further optimization problems. Further problems will
involve more complex control strategies and parameter
estimation such as estimation of transmission probabil-
ities from an infected individual to a susceptible
individual.
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GA is well suited for problems that have a complex
fitness landscape as the recombination methods of GA
are able to move the population out of local minima that
a gradient search or hill climbing method may not be
able to. The GA may also converge much more quickly
than the RMHC algorithm because of the non-
directional mutations employed by RMHC. In RMHC,
we repeatedly randomly modify the currently best
individual in hopes that its offspring are better than
the original, without inducing any directionality into the
random mutations. The GA attempts to breed two
relatively fit individuals allowing the possibility of
extracting the best genes from both individuals to create
a more fit child. This approach takes advantage of
genetic diversity that, as it seems, may be necessary to
perform optimizations of this kind.

Although the optimal vaccination distributions found
here are similar to those found by Longini et al. (1978)
some years ago, the simulation model and optimization
methods that we employ here are more general and
comprehensive than those earlier efforts. When the next
pandemic strain of influenza is identified somewhere in
the world, vaccine formulation and production should
proceed as quickly as possible. Once the age-specific
illness attack rate patterns are identified, the epidemic
simulation model with the current US population
structure can be calibrated. Then the optimization
model can be used to investigate the best vaccine
distribution given the quantities available. Influenza
antiviral agents could be used to slow transmission until
vaccine is available (Longini et al., 2004).
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