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Severe acute respiratory syndrome (SARS) has been the first severe contagious disease to emerge in the 21st
century. The available epidemic curves for SARS show marked differences between the affected regions with
respect to the total number of cases and epidemic duration, even for those regions in which outbreaks started
almost simultaneously and similar control measures were implemented at the same time. The authors developed
a likelihood-based estimation procedure that infers the temporal pattern of effective reproduction numbers from
an observed epidemic curve. Precise estimates for the effective reproduction numbers were obtained by applying
this estimation procedure to available data for SARS outbreaks that occurred in Hong Kong, Vietnam, Singapore,
and Canada in 2003. The effective reproduction numbers revealed that epidemics in the various affected regions
were characterized by markedly similar disease transmission potentials and similar levels of effectiveness of
control measures. In controlling SARS outbreaks, timely alerts have been essential: Delaying the institution of
control measures by 1 week would have nearly tripled the epidemic size and would have increased the expected
epidemic duration by 4 weeks.

disease outbreaks; estimation; infection; models, statistical; SARS virus; severe acute respiratory syndrome; 
statistics

Abbreviations: CI, confidence interval; SARS, severe acute respiratory syndrome.

Editor’s note: An invited commentary on this article
appears on page 517, and the authors’ response appears on
page 520.

On November 16, 2002, the first known case of atypical
pneumonia occurred in Guangdong Province in southern
China (1). In late February 2003, the infection spread from
Guangdong to Hong Kong. From there it spread by airline

throughout the world and seeded outbreaks in Vietnam,
Singapore, and Canada (2–4). On March 12, 2003, the World
Health Organization issued a global alert. On March 15, the
World Health Organization issued a second global alert and
provided a case definition and a name, severe acute respira-
tory syndrome (SARS), for the new disease (1). By this time,
Hong Kong, Vietnam, Singapore, and Canada had instituted
general infectious disease control measures, such as quaran-
tine, isolation, and strict hygiene measures in hospitals (1).
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The etiologic agent of the disease, a coronavirus, was identi-
fied on April 16, 2003 (5). Estimates of important epidemio-
logic measures such as the case-fatality rate and the
incubation period were reported in May 2003 (6–8).

Despite the rapid progression of understanding of the new
disease, differences between the epidemic curves (numbers
of probable SARS cases by date of symptom onset) have
been awaiting further explanation. For the affected regions,
these epidemic curves have been publicly available from the
end of March 2003 onwards (9), and they reveal distinct
temporal patterns in numbers of SARS cases. This is espe-
cially remarkable for the epidemics in Hong Kong, Vietnam,
Singapore, and Canada, since these epidemics started almost
simultaneously in late February 2003 and similar control
measures were put in place at almost the same time in March
2003 (figure 1, parts a–d). The question arises as to whether
the affected regions differed in terms of transmission poten-
tial for SARS or effectiveness of control measures. In this
paper, we interpret the observed epidemic curves with regard
to disease transmission potential and effectiveness of control
measures, and we compare the epidemiologic profiles of
SARS outbreaks in Hong Kong, Vietnam, Singapore, and
Canada.

DATA

Observed epidemic curves

The epidemic curve is the number of reported cases by
date of symptom onset. For each reported case i, we denote

the symptom onset date by ti. For the SARS epidemics in
Hong Kong, Vietnam, and Singapore, we derived the dates
of symptom onset from epidemic curves provided by the
World Health Organization (9). For Canada, we used the
epidemic curve provided by Health Canada (10).

Observed distribution of generation intervals

The generation interval, denoted by τ, is the time from
symptom onset in a primary case to symptom onset in a
secondary case. Sometimes this generation interval is called
the serial interval (8) or generation time (11). The generation
intervals observed during the SARS outbreak in Singapore
are well described by a Weibull distribution with a shape
parameter α and a scale parameter β, with values corre-
sponding to a mean generation interval of 8.4 days and a
standard deviation of 3.8 days (8). We denote this distribu-
tion by τ ∼ w(τ|α,β).

ESTIMATION OF REPRODUCTION NUMBERS

Reproduction numbers

The key epidemiologic variable that characterizes the
transmission potential of a disease is the basic reproduction
number, R0, which is defined as the expected number of
secondary cases produced by a typical primary case in an
entirely susceptible population (12–15). When infection is
spreading through a population, it is often more convenient
to work with the effective reproduction number, R, which is

FIGURE 1. Epidemic curves (numbers of cases by date of symptom onset) for severe acute respiratory syndrome (SARS) outbreaks in a) Hong
Kong, b) Vietnam, c) Singapore, and d) Canada and the corresponding effective reproduction numbers (R) (numbers of secondary infections
generated per case, by date of symptom onset) for e) Hong Kong, f ) Vietnam, g) Singapore, and h) Canada, 2003. Markers (white spaces) show
mean values; accompanying vertical lines show 95% confidence intervals. The vertical dashed line indicates the issuance of the first global alert
against SARS on March 12, 2003; the horizontal solid line indicates the threshold value R = 1, above which an epidemic will spread and below
which the epidemic is controlled. Days are counted from January 1, 2003, onwards.
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defined as the actual average number of secondary cases per
primary case. The value of R is typically smaller than the
value of R0, and it reflects the impact of control measures and
depletion of susceptible persons during the epidemic. If R
exceeds 1, the number of cases will inevitably increase over
time, and a large epidemic is possible. To stop an epidemic,
R needs to be persistently reduced to a level below 1. Estima-
tion of R is a simple affair if there is information about who
infected whom. Then it is possible to construct an infection
network (11), wherein cases are connected if one person
infected the other. Estimation of R involves simply counting
the number of secondary infections per case.

A likelihood-based estimation procedure

Often, estimation of the effective reproduction number is a
complicated affair, because only the epidemic curve is
observed and there is no information about who infected
whom. Recent analyses of closely monitored epidemics have
shown that it is possible to estimate the probability that one
person has infected another if the spatial locations of the
infected persons are available (11, 16). However, when only
times of symptom onset are available, most investigators
resort to approximating R by assuming an exponential
increase in the number of cases over time (8, 17) or by fitting
a specific model that summarizes assumptions about the
epidemiology of the disease (7, 18, 19). Such assumptions
can be avoided by using a likelihood-based estimation proce-
dure that infers “who infected whom” from the observed
dates of symptom onset as provided by the epidemic curve.
However, the computational burden of a straightforward
numerical evaluation of the likelihood appears to be enor-
mous, since it requires consideration of all possible infection
networks, and even for a small outbreak of 50 cases
there are almost 7 × 1082 possible infection networks (see
Appendix 1).

Here we show that it is possible to obtain likelihood-based
estimates of R while avoiding the computational problems if
we use pairs of cases rather than the entire infection network.
The relative likelihood pij that case i has been infected by
case j, given their difference in time of symptom onset ti – tj,
can be expressed in terms of the probability distribution for
the generation interval. This distribution for the generation
interval is available for many infectious diseases, and we
denote it by w(τ). The relative likelihood that case i has been
infected by case j is then the likelihood that case i has been
infected by case j, normalized by the likelihood that case i
has been infected by any other case k: 

The effective reproduction number for case j is the sum over
all cases i, weighted by the relative likelihood that case i has
been infected by case j: 

Note that we are not making any assumption regarding the
distribution of numbers of secondary infections per case
(i.e., the pij are independent in j). Additional detail on the

derivation of these equations is provided in Appendix 1. The
estimation algorithm allows estimation of the effective
reproduction numbers for infectious diseases at a finer
temporal resolution under more general assumptions than
was previously possible.

Testing the estimation procedure with simulated data

To test how well the estimation procedure approximates
the underlying value of an effective reproduction number
during a typical SARS outbreak, we estimate the effective
reproduction numbers from simulated epidemic curves. We
have constructed a stochastic, individual-based model that
simulates epidemic processes with exactly specified proper-
ties. The model allows for a variable effective reproduction
number Rt as a function of symptom onset data t, and the
model parameters are estimated from observations on the
SARS epidemic in Singapore (see Appendix 2). Applying
the estimation procedure to simulated epidemic curves
shows that most of the estimates are close to the actual repro-
duction numbers and that a few estimates based on small
outbreak sizes are below the actual values that are used in the
simulation model. On average, the estimates tend to be lower
than the actual values but deviate less than 5 percent from the
actual reproduction numbers. If we account for the effects of
incomplete reporting and temporal change in generation
interval, the estimates become only slightly less accurate,
and on average they deviate less than 15 percent from the
actual reproduction numbers (see Appendix 2).

RESULTS

For Hong Kong, Vietnam, Singapore, and Canada, we
have converted the epidemic curves into the time course of
effective reproduction numbers. The results are shown in
figure 1, parts e–h. These four large outbreaks were
sparked almost simultaneously by the same index patient.
All regions have faced erratic “super-spread events”
wherein cases produced more than 10 secondary infections.
These “super-spread events” show up in parts e–h of figure
1 as temporary increases in effective reproduction numbers
around the symptom onset date of the index case for the
“super-spread event.” In Hong Kong, Vietnam, and
Singapore, there were “super-spread events” marking the
start of the outbreak. In Hong Kong, Singapore, and
Canada, there were “super-spread events” after control
measures were implemented.

During the early phase of the SARS epidemic, before the
first World Health Organization global alert was issued on
March 12, 2003, the average effective reproduction numbers
were markedly similar across the regions: Each case
produced approximately three secondary infections (table 1).
A value of R slightly higher than 3 is consistent with the
observed epidemics in all four regions. Around mid-March,
control measures were implemented in all regions, and
during this period the effective reproduction numbers
decreased sharply. For some regions, the effective reproduc-
tion numbers continued to decrease at a slow pace,
suggesting improvement of control measures while the
epidemic was going on. After the first World Health Organi-

pij w ti tj–( ) w ti tk–( ).
i k≠∑⁄=

Rj pij.
i
∑=
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zation global alert, each case produced approximately 0.7
secondary infections (table 1). A value of R = 0.7 is consis-
tent with all four regions, except Canada. By the beginning
of July 2003, transmission of the SARS virus had been
stopped in all regions where the infection was introduced in
late February 2003 (1).

To explore the range of epidemic curves that can result
from the same epidemic process, we performed extensive
computer simulations using a model of epidemics with char-
acteristics similar to those of SARS (see Appendix 2). The
outcome of 10,000 simulations shows a highly variable
epidemic size and epidemic duration: The mean epidemic
size is 685 cases (95 percent confidence interval (CI): 27,
2,446), and the mean epidemic duration is 98 days (95
percent CI: 32, 187). All observed sizes and durations of
SARS epidemics are within this very wide range of possible
outcomes resulting from chance alone. Additionally, we
used computer simulations to explore the effect of the timing
of implementation of control measures on the epidemic size
and duration, in a setting that is typical for the SARS
outbreaks. The simulation results show a high sensitivity to
the timing of implementation of control. On average, a 1-
week delay in implementation of control measures results in
a 2.6-fold increase in mean epidemic size and a 4-week
extension of the mean epidemic duration.

DISCUSSION

This study showed that there exists a direct relation
between the epidemic curve and the time course of the repro-
duction number R. This relation is determined by the distri-
bution of the generation intervals. The relation can be used to
monitor the combined effects of transmission potential and
control measures during an epidemic. We have shown that
the epidemic curves for SARS in Hong Kong, Vietnam,
Singapore, and Canada, though apparently different, are all
consistent with a single time course of the effective repro-
duction numbers for SARS. This apparent difference in
epidemic curves arises because chance effects, such as the
occurrence of a rare “super-spread event,” leave a lasting
trace on the epidemic curve. In contrast, chance events mani-
fest only as temporary increases in the reproduction number.
Our analysis of the epidemic curves for SARS shows that
one should be cautious in taking a smaller epidemic size and
a shorter epidemic duration as proof of better infection
control.

We have presented the relation between observed
epidemic curves and inferred reproduction numbers from
an infection-network perspective. We are certainly not the
first researchers to do so: Infection networks have been
used extensively in the area of sexually transmitted
diseases (20), and an infection-network perspective was
adopted to analyze a closely observed foot-and-mouth
epidemic in Great Britain (11). Our contribution is the deri-
vation of likelihood-based estimates of effective reproduc-
tion numbers, requiring only the observed time of symptom
onset for the observed cases. The use of a likelihood frame-
work provides a set of powerful tools for inference, uncer-
tainty analysis, and model selection (20); the use of only
time of symptom onset allows us to apply this method to
routinely collected epidemic-curve data. However, estima-
tion of effective reproduction numbers from epidemic
curves has an intrinsic limitation that should be kept in
mind: The effective reproduction number contains entan-
gled information about the transmission potential (i.e., the
basic reproduction number) and the effectiveness of control
measures. These two components can be disentangled only
when we obtain additional information—for example,
about the time of implementation of control measures.
Moreover, individual contributions to the effective repro-
duction number are entangled if their date of symptom
onset is smaller than the generation interval. This limitation
can be overcome if more detailed information on who
infected whom is available (see Appendix 1).

For the SARS outbreak in Hong Kong, it is possible to
compare our results with previously published estimates.
Our estimate of the average effective reproduction number
prior to the first global alert (R = 3.6, 95 percent CI: 3.1, 4.2)
is more precise than the estimate obtained by assuming an
exponential increase in the number of cases (R = 3.5, 95
percent CI: 1.5, 7.7) (8) and more precise than the estimated
lower bound excluding “super-spreading events” (R > 2.7)
(7). Our estimate of the average effective reproduction
number after the first global alert (R = 0.7, 95 percent CI:
0.7, 0.8) is much higher than the previously estimated lower
bound excluding “super-spread events” (R > 0.14) (7). This
comparison illustrates that the estimation algorithm
presented here allows more precise estimation of the effec-
tive reproduction numbers for infectious diseases under
more general assumptions than was previously possible.

The effectiveness of control measures against SARS can
be estimated if it is assumed that the sudden decrease in the

TABLE 1.   Average daily effective reproduction number (R) for cases of severe acute respiratory 
syndrome (SARS) with a symptom onset date before or after the issuance of the first global alert 
against SARS on March 12, 2003, for regions where infection was introduced in late February 
2003

* CI, confidence interval.

Symptom 
onset

Hong Kong Vietnam Singapore Canada

R 95% CI* R 95% CI R 95% CI R 95% CI

Before alert 3.6 3.1, 4.2 2.4 1.8, 3.1 3.1 2.3, 4.0 2.7 1.8, 3.6

After alert 0.7 0.7, 0.8 0.3 0.1, 0.7 0.7 0.6, 0.9 1.0 0.9, 1.2
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effective reproduction number for SARS around the time of
the first global alert was indeed caused by the implementa-
tion of control measures. The decrease in the reproduction
number from 3 to 0.7 then suggests that the control measures
taken around this time prevented approximately 77 percent
(100 × (3 – 0.7)/3 percent ≈ 77 percent) of all potential
secondary infections. This effectiveness suffices for eventu-
ally stopping infections in situations where each case causes
up to 4.3 (1/(1 – 0.77) ≈ 4.3) secondary infections. Recalling
that before implementation of control measures, each SARS
case produced, on average, approximately three secondary
infections, this effectiveness has been barely sufficient for
the eventual interruption of the chain of human-to-human
transmission of the SARS virus.

As the direct threat of a worldwide SARS epidemic has
waned, the question arises as to how we can use the experi-
ence with SARS to improve infection control against new
infectious diseases. Our analysis of the epidemic curves for
SARS, as reported for Hong Kong, Vietnam, Singapore,
and Canada, shows how crucial the rapid implementation
of control measures has been in limiting the impact of the
epidemics, both in terms of preventing more casualties and
in terms of shortening the period during which stringent
infection control measures were in place. A first lesson
from the several SARS epidemics is that a timely alert
against a new infectious disease is most essential. Our anal-
ysis suggests that the control measures implemented
prevented approximately three quarters of all potential
secondary infections; this may be insufficient to stop
another new infectious disease. A second lesson, then, is
that it is crucial to estimate the transmission potential of a
new emerging disease as soon as possible and to establish
whether additional, more stringent control measures are
required.
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APPENDIX 1

Estimation Procedure

Infection networks

An outbreak of an infectious disease can be described as a directed network in which the nodes represent cases and the
directed edges between the nodes represent transmission of infection between cases. We consider an outbreak of n reported
cases, of which q cases have contracted infection from outside the population. This leaves n – q persons whose primary case is
among the reported cases. We label the cases by an index i ∈{1, …, n}. Because each case has exactly one primary case, each
node in the infection network must have exactly one incoming edge. Because a case patient cannot have infected himself or
herself, there cannot be any edges from a node to itself. The structure of a network that satisfies these constraints can be
uniquely represented by a vector v, of which the ith element v(i) denotes the label of the primary case that has infected the case
with label i. We use v(i) = 0 to refer to sources of infection outside the population. We denote the entire set of all infection
networks that satisfy the above constraints by V. The number of different network structures in V is (n – q)n–1, since, for any of
the n – q nonimported cases, there are n – 1 possible primary cases. Note that the set V includes network structures with cycles
and that such structures cannot represent transmission between cases.

Likelihood inference for infection networks

We use a probability model to infer the likelihood that a specific infection network v underlies the observed epidemic curve t. The
probability model is built on the assumption that transmission of infection occurred only among the reported n cases. A key element
in this model is the probability density function for the generation interval, w(τ|θ). Here, τ is the generation interval and θ is a vector
of parameters that specify the probability distribution. We require w(τ|θ) = 0 for τ < 0. All infection networks with cycles have at
least one negative generation interval, and these networks are assigned zero probability by this requirement. In the absence of an
observed epidemic curve, each infection network is considered equally likely. This is equivalent to requiring independence between
unobserved transmission events from case j to case i and from case j to any other case k. Henceforth we will refer to this requirement
as the “independence condition.” In Appendix 2, we simulate epidemic processes that do not meet the above-mentioned technical
conditions, and we use these simulations to test for the robustness of the likelihood-based estimation procedure.

Likelihood functions

The probability of observing epidemic curve t, given the parameters θ for the generation interval and v for the infection network, is

(A1)

Because we are interested in the likelihood of sets of infection networks, we sum the likelihood over networks in a set. This
requires a “weight function” c(v|θ) for each infection network. The independence condition implies that c(v|θ) is a constant,
denoted c. The integrated likelihood over the set of all networks is therefore

(A2)

The integrated likelihood over the set of all infection networks in which case k has been infected by case l is

(A3)

Estimation

The relative likelihood that case k has been infected by case l is

(A4)

L v θ t,( ) w ti tv i( ) θ–( ).
i 1=

i n q–=
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The relative likelihood of case l’s infecting case m is inde-
pendent of the relative likelihood of case l’s infecting any
other case k (by the independence condition). The distribu-
tion of the effective reproduction number for case l is

(A5)

with an expected value

(A6)

The average daily reproduction number Rt is calculated as
the arithmetic mean over Rl for all of those cases l who show
the first symptoms of illness on day t.

Simultaneous estimation of parameters v and θ

When we have observed transmission of infection between
some pairs of cases, it is possible to infer both infection
network (v) and generation interval (θ) simultaneously. We
must consider the likelihood

(A7)

where (k,l) denotes all pairs of cases for which any case k is
known to have been infected by another case l. Estimates for
both generation interval (θ) and infection network (v) are
obtained by maximizing this equation using the expectation-
maximization algorithm (21). Note that the independence
condition applies only to the unobserved transmission
events.

APPENDIX 2

Testing the Estimation Procedure with Simulated Data

A stochastic simulation model

We have constructed a stochastic, individual-based model
to generate infection networks that result from epidemic
processes with exactly specified properties. We use such
simulated infection networks for testing the estimation
procedure and for exploring the expected distribution of
epidemic size and epidemic duration. The model allows for a
variable effective reproduction number Rt as a function of
symptom onset date t. In the simulations described here, we
set the effective reproduction number to a value of Rt = 3 for
cases with a symptom onset date before the issuance of the

first global alert on March 12, 2003, and to a value of Rt = 0.7
for cases with a symptom onset date on or after March 12,
2003. The model draws for each case the number of
secondary infections from a negative binomial distribution,
which is determined by the mean R and the shape parameter
kt = (Rt + Rt

2)/σt
2. The model uses values of kt = 0.18 for cases

with a symptom onset date before March 12, 2003, and kt =
0.08 for cases with a symptom onset date on or after March
12, 2003; these values correspond to the distribution of the
number of secondary infections per case as observed during
the severe acute respiratory syndrome (SARS) outbreak in
Singapore (4). The model draws for each new infection the
generation interval from a Weibull distribution with a mean
and standard deviation of 8.4 days and 3.8 days, respectively
(8). Each simulation is started by one index case that
produces at least 10 secondary cases, which corresponds to a
SARS outbreak that is started by a so-called “super-spread
event,” to ensure that the epidemic takes off.

Accuracy of the estimation procedure

We test for accuracy of the proposed estimation procedure
by first generating 20 epidemic curves using the stochastic
simulation model and then estimating the time course of the
reproduction number for the simulated epidemic curves using
the proposed method. The estimated reproduction numbers
tend to be close to the actual values used in the simulation
model, except for simulated epidemic curves with a small
number of cases in which the estimated reproduction numbers
are well below the actual values (the actual values of the
reproduction numbers for the simulated epidemic curves were
3 and 0.7 for cases with symptom onset data before and after
March 12, 2003, respectively; the average estimated values
were 3.09 and 0.68).

The effect of incomplete reporting

The estimation procedure supposes that all infected
persons will show overt clinical symptoms and that all
cases will be reported, an assumption that might not be
correct for an infectious disease like SARS. To test for the
impact of incomplete reporting on the estimated effective
reproduction number, we modified the model such that
each infected individual would have a probability of his or
her case’s being reported of 0.5. The resulting estimates
were only slightly less accurate than they were with
complete reporting (the actual values of the reproduction
numbers for the simulated epidemic curves were 3 and 0.7
for cases with symptom onset data before and after March
12, 2003, respectively; the average estimated values were
2.69 and 0.70).

The effect of changes in generation interval

The estimation procedure presented here supposes that the
distribution of generation intervals does not change over time.
However, for the SARS epidemic in Singapore, there was a
tendency for the generation interval to decrease after control
was implemented (8). Cases with a symptom onset date before
March 12, 2003, had a mean generation interval of 10.0 days

Rl Bernoulli p k l,( )[ ]
k 1=

k n q–=

∑∼

E Rl( ) p k l,( ).
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k n q–=
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and a standard deviation of 2.8 days, whereas cases with a
symptom onset date on or after March 12, 2003, must have had
a mean generation interval of 8.2 days and a standard deviation
of 3.9 days (8). To test for the impact of this temporal change
in the duration of the generation interval, we modified the
model by using two different Weibull distributions, one before
March 12 and the other one on or after March 12, each param-

eterized according to the Singapore data. The estimates were,
on average, slightly lower than they were with use of the same
generation interval throughout the epidemic (the actual values
of the reproduction numbers of the simulated epidemic curves
were 3 and 0.7 for cases with symptom onset data before and
after March 12, 2003, respectively; the average estimated
values were 2.60 and 0.66 over 20 simulations).


