
Physics 311 General Relativity

Lecture 15: Metrics and curved space

NO HOMEWORK this week

Today's lecture plan

- Flat spacetime of Special Relativity.
- Solving Einstein Field Equation for empty space the "vacuum solution"
- Schwarzschild metric

A look back

 In Special Relativity the spacetime is said to be "flat", it has no "curvature". What do we mean when we say "the spacetime is flat", "the spacetime has no curvature"?

• We mean that the path of a free particle is a straight line, and that the square of the interval is a *linear* combination of the space and time components squared:

 $ds^2 = dt^2 - (dx^2 + dy^2 + dz^2)$

(in the system of units where c = 1)

• This is a lot like the Euclidean geometry, which is also flat. We've alluded to a non-Euclidean geometry in the last lecture; we'll soon see how it comes to be.

The Minkowski metric

• We can write the expression for the interval in the matrix form:

$$\mathbf{ds} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & i \end{array} \right) \times \left(\begin{array}{c} dt \\ dx \\ dy \\ dz \end{array} \right)$$

(so that $ds^2 = dt^2 - dx^2 - dy^2 - dz^2$)

• This matrix – a very simple matrix indeed – defines the metric of Special Relativity, the **Minkowski metric**. It is simple yet powerful; it completely describes the spacetime of Special Relativity.

Einstein Field Equation: another dissection

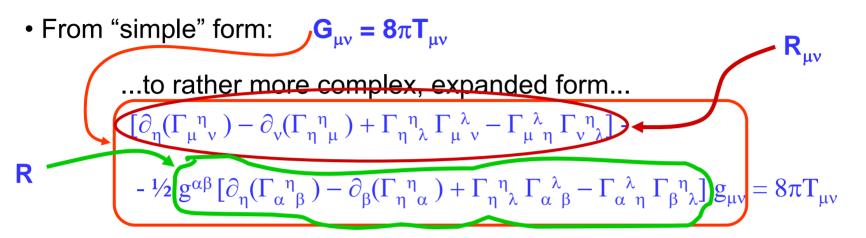
• Generally speaking, Einstein field equation

 $\boldsymbol{G}_{\mu\nu} = \boldsymbol{8}\pi\boldsymbol{T}_{\mu\nu}$

is a set of 10 (16 components in each tensor, minus 6 due to symmetry, and if you're smart enough, minus 4 more) *coupled elliptic-hyperbolic nonlinear partial differential equations for the metric components*.

• Just so that we are clear on definitions:

"coupled" – each differential equation contains multiple terms; equations cannot be solved individually.


"elliptic-hyperbolic" – determinants of sub-matrices of the system of equations matrix are either positive or negative; never zero.

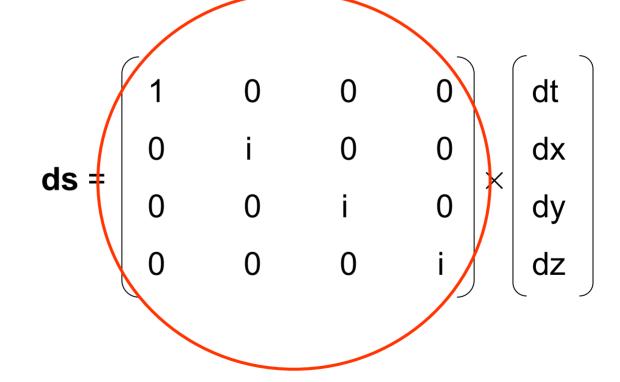
"nonlinear" – dependent on nonlinear function of metric components

"partial differential equation" – an equation containing partial derivatives of functions, for example $\partial^2 f(x,y,z)/\partial x \partial y$

"metric components" – components of the metric tensor $g_{\mu\nu}$

Einstein Field Equation expanded

Here, $\Gamma_{\alpha \beta}^{\gamma} = \frac{1}{2} g^{\delta \gamma} [\partial_{\beta}(g_{\alpha \delta}) + \partial_{\alpha}(g_{\beta \delta}) - \partial_{\delta}(g_{\alpha \beta})]$ are *Christoffel symbols of* 2^{nd} kind – tensor-like objects derived from Riemann metric g;


 $\partial_{\alpha} = (\partial/\partial x^{\alpha})$ denotes partial derivative with respect to variable x^{α} ;

and $g_{\alpha\beta}$ is the metric tensor – roughly speaking, the function that tells us how to compute distances between points in a given space:

$$ds^2 = \sum g_{\alpha\beta} dx_{\alpha} dx_{\beta}$$

Back to Minkowski metric

• The matrix in the expression for the interval is nothing more, nor less, than the Minkowski metric tensor $g_{\alpha\beta}$

 So we actually know one metric tensor already – it's not too scary at all!

... but that's a very special case...

... a slightly more general case...

... looks a lot different...

If you sit down and write down the Ricci tensor for a general case of a 2-dimensional space with axial symmetry, you would get something like this:

R ₉₉ = -	$\frac{2 a^2 \frac{\partial \psi}{\partial \theta} \cot \theta}{\delta \psi}$	$+ \frac{2 a c \frac{\partial \psi}{\partial \eta} \infty}{\delta \psi}$	$\frac{d\theta}{d\theta} + \frac{a \frac{\partial c}{\partial \eta} \cot \theta}{\delta}$	$-\frac{\frac{\partial a}{\partial \eta}c\cot\theta}{2\delta}$ -	$\frac{a \frac{\partial a}{\partial \theta} \cot \theta}{2\delta} =$	$\frac{2 a^2 \frac{\partial^2 \psi}{\partial \theta^2}}{\delta \psi}$
-	$-rac{2a^2(rac{\partial\psi}{\partial\phi})^2}{\delta\psi^2}+$	$rac{4acrac{\partial\psi}{\partial\eta}rac{\partial\psi}{\partial\theta}}{\delta\psi^2}$.	$-\frac{a^2\frac{\partial d}{\partial \phi}\frac{\partial \psi}{\partial \phi}}{\delta d\psi}+\frac{a}{\phi}$	$\frac{\partial d}{\partial \theta} \frac{\partial \psi}{\partial \theta} + \frac{2a \frac{\partial g}{\partial \theta}}{\delta t}$	$\frac{\frac{\partial \psi}{\partial \theta}}{\psi} = \frac{\frac{\partial a}{\partial \eta} c \frac{\partial}{\partial \theta}}{\delta \psi}$	9
_ <u>3a</u>	$rac{\partial a}{\partial \theta} rac{\partial \psi}{\partial \theta} = rac{2a}{\delta} rac{\partial \psi}{\partial \phi}$	$\frac{2}{\delta^2} c \frac{\partial c}{\partial \theta} \frac{\partial \psi}{\partial \theta} + \frac{2}{\delta^2} \psi$	$\frac{a^2 b \frac{\partial c}{\partial \eta} \frac{\partial \psi}{\partial \theta}}{\delta^2 \psi} = \frac{a^2}{2}$	$\frac{\partial \delta}{\partial \eta} c \frac{\partial \psi}{\partial \delta}}{\delta^2 \psi} - \frac{a \frac{\partial a}{\partial \eta}}{\delta}}{\delta}$	$\frac{bc\frac{\partial\psi}{\partial\theta}}{2\psi} + \frac{a^3\frac{\partial}{\partial\theta}}{\delta^2}$	6 <u>00</u> 8 08 9
	$+rac{a^2rac{\partial a}{\partial \theta}brac{\partial \psi}{\partial \theta}}{\delta^2\psi}$	$-\frac{2ab\frac{\partial^2\psi}{\partial\eta^2}}{\delta\psi}-$	$-\frac{2\frac{\partial^2\psi}{\partial \eta^2}}{\psi}+\frac{4ac\frac{3}{2}}{\delta\psi}$	$\frac{\partial^2 \psi}{\partial \phi^2} = \frac{2 a b \left(\frac{\partial \psi}{\partial \phi}\right)}{\delta \psi^2}$	$\frac{(2)^2}{\psi^2} + \frac{6(\frac{\partial\psi}{\partial q})^2}{\psi^2}$	
	$+\frac{ac\frac{\partial d}{\partial \theta}\frac{\partial \psi}{\partial \eta}}{\deltad\psi}\cdot$	$-\frac{ab\frac{\partial d}{\partial \eta}\frac{\partial \psi}{\partial \eta}}{\delta d\psi} -$	$\frac{2c\frac{\partial c}{\partial \eta}\frac{\partial \phi}{\partial \eta}}{\delta\psi} + \frac{\frac{\partial a}{\partial \theta}}{\delta\psi}$	$\frac{c\frac{\partial\varphi}{\partial\eta}}{\delta\psi} = \frac{2a\frac{\partial\phi}{\partial\eta}}{\delta\psi}$	$\frac{\partial \psi}{\partial \eta} + \frac{\frac{\partial a}{\partial \eta} b \frac{\partial \psi}{\partial \eta}}{\delta \psi}$	
$+\frac{2a^{2}}{3}$	$\frac{b\frac{\partial x}{\partial \theta}\frac{\partial \psi}{\partial \eta}}{\delta^2\psi} = \frac{2}{b\eta}$	$\frac{a b c \frac{\partial c}{\partial \eta} \frac{\partial \psi}{\partial \eta}}{\delta^2 \psi} =$	$\frac{a^2 \frac{\partial \phi}{\partial \phi} c \frac{\partial \psi}{\partial \phi}}{\delta^2 \psi} - \frac{a \frac{\delta}{\delta}}{\delta^2 \psi}$	$\frac{\frac{\partial}{\partial b} b c \frac{\partial \psi}{\partial \eta}}{\delta^2 \psi} + \frac{a^2 b}{\delta}$	$\frac{\partial b}{\partial \eta} \frac{\partial \psi}{\partial \eta}}{2 \psi} + \frac{a \frac{\partial a}{\partial \eta}}{\delta}$	b ² θψ ² ψ
	$+\frac{a\frac{\partial}{\partial \eta}}{2\lambda}$	$\frac{\frac{\partial g}{\partial g}}{d} = \frac{\frac{\partial g}{\partial g} c \frac{\partial g}{\partial g}}{4 \delta d}$	$-\frac{a\frac{\partial a}{\partial \theta}\frac{\partial d}{\partial \theta}}{4\delta d}-\frac{\delta}{2}$	$\frac{\frac{2}{q^3}}{\frac{1}{q}} + \frac{\left(\frac{\partial d}{\partial q}\right)^2}{4 d^2} - \frac{d}{q}$	200 00 200 00 200	
	$+\frac{\frac{\partial q}{\partial \theta}c}{4\delta}$	$\frac{\partial d}{\partial \eta} + \frac{\partial a}{\partial \eta} b \frac{\partial d}{\partial \eta} + \frac{\partial a}{\partial \eta} b \frac{\partial d}{\partial \eta}$	$+\frac{a\frac{\partial^2 \epsilon}{\partial \eta \partial \theta}}{\delta}-\frac{a\frac{\partial}{\partial \eta}}{2}$	$\frac{a}{b^2} - \frac{a}{2\delta} + \frac{a}{2\delta} + \frac{a}{2\delta}$	c de	

$-\frac{a\frac{\partial a}{\partial \theta}c\frac{\partial c}{\partial \theta}}{2\delta^2}$	$= \frac{a \frac{\partial a}{\partial \eta} b \frac{\partial c}{\partial \theta}}{2 \delta^2} - \frac{b}{2 \delta^2} \delta^2 + \frac{b}{2 \delta^2} + \frac{b}{2 \delta$	$-\frac{a\frac{\partial b}{\partial \eta}c\frac{\partial c}{\partial \eta}}{2\delta^2} =$	$\frac{a^2\frac{\partial\delta}{\partial\theta}\frac{\partial e}{\partial\eta}}{2\delta^2} + \frac{b}{\delta}$	$\frac{a\frac{\partial a}{\partial q}\frac{\partial b}{\partial s}c}{4\delta^2} = \frac{a}{4\delta^2}$	$\frac{\frac{\partial a}{\partial b}}{4\delta^2} \frac{\frac{\partial b}{\partial \eta}}{\delta^2} c$
	$+ \frac{a^2 \frac{\partial a}{\partial \theta} \frac{\partial b}{\partial \theta}}{4 \delta^2} +$	$+\frac{a^2\left(rac{\partial b}{\partial \eta} ight)^2}{4\delta^2}+$	$\frac{a\frac{\partial a}{\partial \eta}b\frac{\partial b}{\partial \eta}}{4\delta^2} + \frac{a}{\delta}$	$\frac{a(\frac{\partial a}{\partial \theta})^2 b}{4 \delta^2}$	
$R_{\eta\theta} = -\frac{2ac\frac{\partial\psi}{\partial\theta}\cot}{\delta\psi}$	$\frac{\theta}{\theta} + \frac{2ab\frac{\partial\psi}{\partial\eta}}{\delta\psi}$	$\frac{\cot\theta}{\partial n} - \frac{2\frac{\partial\psi}{\partial n}}{1}$	$\frac{\cot\theta}{\phi} - \frac{\frac{\partial d}{\partial \eta} \circ}{2 \circ}$	$\frac{\partial \theta}{\partial \theta} = \frac{\frac{\partial \theta}{\partial \theta} c \phi}{2\delta}$	$\frac{\partial t \theta}{\partial t} + \frac{a \frac{\partial b}{\partial \eta} \cot \theta}{2\delta}$
$-\frac{2ac\frac{\partial^2\psi}{\partial\theta^2}}{\delta\psi}-$	$\frac{2 a c (\frac{\partial \psi}{\partial \delta})^2}{\delta \psi^2} +$	$\frac{4ab\frac{\partial\psi}{\partial\eta}\frac{\partial\psi}{\partial\theta}}{\delta\psi^2}$	$+ \frac{2 \frac{\partial \psi}{\partial \eta} \frac{\partial \psi}{\partial \theta}}{\psi^2} -$	$\frac{ac\frac{\partial d}{\partial \theta}\frac{\partial \psi}{\partial \theta}}{\delta d\psi} +$	$\frac{ab\frac{\partial d}{\partial \eta}\frac{\partial \psi}{\partial \theta}}{\delta d\psi}$
$-rac{\partial d}{\partial \eta}rac{\partial \varphi}{\partial \theta}+$	2 α δε δύ δψ	$\frac{\partial a}{\partial \theta} c \frac{\partial \psi}{\partial \theta} + \frac{2}{\delta} \frac{\delta \psi}{\delta \psi} + \frac{2}{\delta} \frac{\partial \psi}{\partial \theta} + \frac{2}{\delta} \frac{\partial \psi}$	$\frac{a\frac{\partial b}{\partial \eta}\frac{\partial \psi}{\partial \theta}}{\delta\psi} + \frac{b}{\partial \theta}$	$\frac{\delta}{\delta} \frac{\partial \psi}{\partial \delta} - \frac{2a^2}{\delta}$	$b \frac{g_{0}}{g_{0}} \frac{\partial \psi}{\partial g}$ $\delta^{2} \psi$
$+\frac{2abc\frac{\partial c}{\partial \eta}\frac{\partial \psi}{\partial \theta}}{\delta^2\psi}+$	$\frac{a^2 \frac{\partial b}{\partial \theta} c \frac{\partial \psi}{\partial \theta}}{\delta^2 \psi} \cdot$	+ $\frac{a\frac{\partial a}{\partial \theta}bc\frac{\partial \psi}{\partial \theta}}{\delta^2\psi}$	$-\frac{a^2 b \frac{\partial b}{\partial \eta} \frac{\partial \psi}{\partial \theta}}{\delta^2 \psi}$	$= \frac{a \frac{\partial a}{\partial \eta} b^2 \frac{\partial \psi}{\partial \theta}}{\delta^2 \psi}$	$=\frac{2bc\frac{\partial^2\psi}{\partial n^2}}{\delta\psi}$
$+\frac{4ab\frac{\partial^2 \varsigma}{\partial \eta \partial}}{\delta\psi}$	$\frac{1}{2} - \frac{6 \frac{\partial^2 \psi}{\partial \eta \partial \theta}}{\psi} - \frac{1}{2}$	$\frac{2bc(\frac{\partial\psi}{\partial\eta})^2}{\delta\psi^2}.$	+ ab 34 34 8 38 37 8 d \$	$\frac{\frac{\partial d}{\partial \theta} \frac{\partial \psi}{\partial \eta}}{d\psi} - \frac{bc}{d\psi}$	<u>0d 84</u> 85 05 8 d 4
$+ {2 b {\partial e \over \partial \eta} {\partial \psi \over \partial \eta} \over \delta \psi} =$	$\frac{3\frac{\partial b}{\partial n}c\frac{\partial \psi}{\partial n}}{\delta\psi}+\frac{c}{\delta\psi}$	$\frac{\partial \phi}{\partial \psi} \frac{\partial \phi}{\partial \eta} + \frac{2 \frac{2}{2}}{\delta \psi}$	$\frac{\partial a}{\partial \delta} b \frac{\partial \psi}{\partial \eta}}{\delta \psi} + \frac{2a}{2a}$	$\frac{bc\frac{\partial \varphi}{\partial g}\frac{\partial \psi}{\partial \eta}}{\delta^2\psi} = \frac{2}{2}$	$\frac{a b^2 \frac{\partial e}{\partial \eta} \frac{\partial \psi}{\partial \eta}}{\delta^2 \psi}$

... and just a little bit more.

This is a general expression for Ricci tensor R_{mn} in only <u>two dimensions</u>, with <u>axial symmetry</u>. (From Larry Smarr, Univ. of Illinois)

Just try to imagine all of three dimensions of space plus one of time!

Special case: vacuum

• I haven't said anything about the energy-stress tensor $T_{\mu\nu}$ yet. Well, here's an example of this tensor:

 $T_{\mu\nu} = 0$

• This special case is called "vacuum", and corresponding solutions for the metric $g_{\mu\nu}$ are called "vacuum solutions". In this case, we have R = 0.

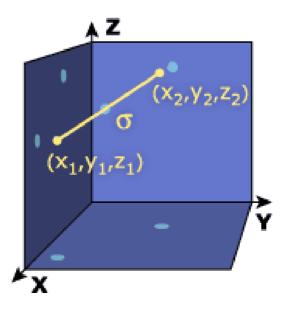
• Wait – what solutions? If we set $T_{\mu\nu}$ to zero, wouldn't our metric be just zero as well?

• Not really! The field equation now has form:

 $\mathbf{R}_{\mu\nu} = \mathbf{0}$

But the left-hand side is a **complicated mess** of derivatives of the metric. There can be many solutions for this "vacuum" equation, including several *exact analytic* solution. These different solutions arise from different symmetries we impose on the metric.

Minkowski metric (one last time)


 Minkowski metric is one of the vacuum solutions for a space that has perfect symmetry – a space that is:

- uniform, so that $g(t,x,y,z) = g(t,x+\Delta x,y,z)$ (also true for y and z)

- isotropic, so that g(t,x,y,z) = g(t,-x,y,z) (also true for y and z)

and a time that is:

- uniform, so that $g(t,x,y,z) = g(t+\Delta t,x,y,z)$

Schwarzschild Vacuum Solution

 Another important metric, first to be explicitly solved only weeks after Einstein published his General Relativity paper is 1915, is called
 Schwarzschild metric, named after the man who solved it.

• This solution assumes *spherical symmetry* of space, as *around* an isolated star.

• How is this "vacuum" if there is a star?! There's mass, thus there is energy, and there must be stress somehow, so tensor $T_{\mu\nu}$ must be nonzero!

• The keyword is "around" – the solution is for the metric of *empty space* (also known as "vacuum") surrounding a spherically-symmetric massive object.

Karl Schwarzschild

Derivation of Schwarzschild solution. 1. Assumptions and notation

• We start by defining our assumptions and notation.

1. The coordinates are (t, r, θ, ϕ) – time + spherical coordinate system. We call these coordinates x_{μ} , with $\mu = 1...4$.

2. Spherical symmetry: metric components are unchanged under $r \rightarrow -r, \theta \rightarrow -\theta$ and $\phi \rightarrow -\phi$.

3. Spacetime is static, i.e. all metric components are independent of time: $(\partial g_{\mu\nu}/\partial t) = 0$; this also means that spacetime is invariant under time reversal.

4. We are looking for vacuum solution $T_{\mu\nu} = 0$, with R = 0.

• What we need to solve then is:

$$R_{\mu\nu} = 0$$

Derivation of Schwarzschild solution. 2. Diagonalizing

• The requirements that metric be time-independent, and symmetric with respect to rotations, allow us to diagonalize the matrix:

1. Time-reversal symmetry: $(t, r, \theta, \phi) \rightarrow (-t, r, \theta, \phi)$ must conserve components of g. The components of the 1st column of the metric, $g_{\mu 1}$ ($\mu \neq 1$), transforms under time reversal as: $g_{\mu 1} \rightarrow -g_{\mu 1}$

Since we demand that $g_{\mu 1} = g_{\mu 1}$, then $g_{\mu 1} = 0$ for ($\mu \neq 1$).

2. Same reasoning for r, θ and ϕ – symmetries leads to all other non-diagonal (i.e. $\mu \neq v$) metric components to vanish.

• Thus, the sought metric has the form:

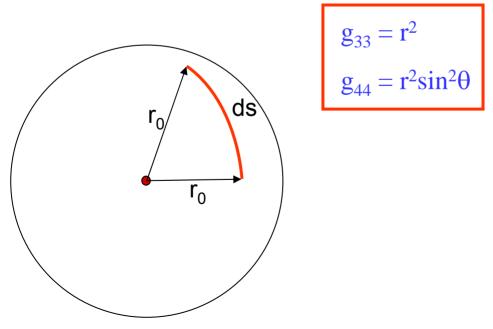
 $ds^2 = g_{11}dt^2 + g_{22}dr^2 + g_{33}d\theta^2 + g_{44}d\phi^2$

Derivation of Schwarzschild solution. 3. Simplifying

• On a sphere of constant radius, and at constant time, the only sphericallysymmetric combination of $d\theta^2$ and $d\phi^2$ is $C(r)(d\theta^2 + \sin^2\theta d\phi^2)$, where C(r) is (a yet unknown) function of radius coordinate only. This expression above is simply the element of a spherical surface.

• For constant t, θ and ϕ (i.e. on the radial line) metric should only depend on the radius coordinate r – again, to conserve the spherical symmetry. That means that the metric components for time and radius, g_{11} and g_{22} , must be functions of r only.

• This simplifies the metric even further, to:


 $ds^{2} = A(r)dt^{2} + B(r)dr^{2} + C(r)(d\theta^{2} + \sin^{2}\theta d\phi^{2})$

Derivation of Schwarzschild solution. 4. Solving for components

• First, we find the function C(r) by noticing that at a surface of constant radius r_0 and at constant time, the separation can be written as:

 $ds^2 = r_0^2 (d\theta^2 + \sin^2\theta d\phi^2)$

• Since this must hold true for all radial surfaces, i.e. for any r, the unknown function C(r) is simply r^2 , and the θ and ϕ – components of the metric are:

Derivation of Schwarzschild solution. 4.1. Solving for components

• Functions A(r) and B(r) can be found by solving the Einstein field equation (what a surprise!). Only 4 equations remain non-trivial:

 $4\partial_{\mathbf{r}}\mathbf{A}\mathbf{B} - 2\mathbf{r}\partial_{\mathbf{r}}^{2}\mathbf{B}\mathbf{A}\mathbf{B} + \mathbf{r}\partial_{\mathbf{r}}\mathbf{A}\partial_{\mathbf{r}}\mathbf{B}\mathbf{B} + \mathbf{r}\partial_{\mathbf{r}}\mathbf{B}^{2}\mathbf{A} = 0$

 $r\partial_r AB + 2A^2B - 2AB - r\partial_r BA = 0$

 $-2r\partial_{r}^{2}BAB + r\partial_{r}A\partial_{r}BB + r\partial_{r}B^{2}A - 4\partial_{r}BA = 0$

 $(-2r\partial_r^2 BAB + r\partial_r A\partial_r BB + r\partial_r B^2 A - 4\partial_r BAB)\sin^2\theta = 0$

• Subtracting equations 1 and 3 leads to:

 $\partial_r AB + \partial_r BA = 0 \implies A(r)B(r) = K$ (a non-zero, real constant)

• Substituting into equation 2 we get:

 $r\partial_r A - A(1 - A) = 0 \implies A(r) = K[1 + 1/(Sr)] = g_{11}$ $B(r) = [1 + 1/(Sr)]^{-1} = g_{22}$

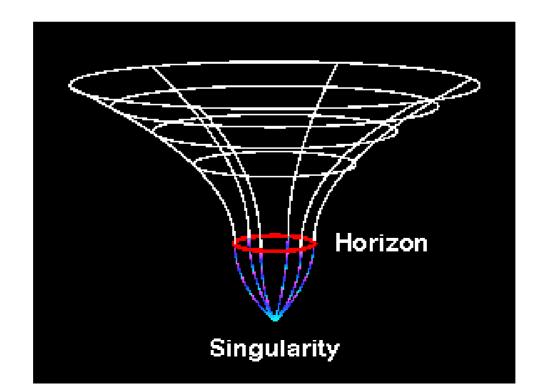
Derivation of Schwarzschild solution. 5. Arriving at solution

• Finally, we find the coefficients K and S in the *weak-field approximation* – i.e. far away from the gravitational source. At $r \rightarrow \infty$ the spacetime must approach Minkowski spacetime, thus:

 $g_{11} = K[1 + 1/(Sr)] \rightarrow K \implies K = c^2 = 1$

• Gravity must converge to Newtonian in the weak field. This lets us find the numerical value of the constant S:

 $S = -c^2/(2Gm) = -1/(2m)$


where m is the mass of the central body, and G is the gravitational constant.

• The full Schwarzschild metric is:

 $ds^{2} = [1 - (2m/r)]dt^{2} - (1 - (2m/r))^{-1}dr^{2} - r^{2}d\theta^{2} - r^{2}\sin^{2}\theta d\phi^{2}$

Schwarzschild spacetime

- Schwarzschild spacetime has curvature that decreases with distance from the center. At infinity, Schwarzschild spacetime is identical to the flat Minkowski spacetime.
- In the center of Schwarzschild metric, *singularity* is possible, leading to formation of a Schwarzschild (non-rotating) *black hole*.

Recap:

• Einstein field equations can be explicitly solved for certain types of stress-energy tensor. These solutions are called *spacetime metrics*.

• Special case of stress-energy tensor – the vacuum – leads to Minkowski and Schwarzschild spacetime (among many others).

• Schwarzschild metric is fairly simple. We will mostly see its 3-dimentional (one time plus two space) case:

 $ds^{2} = [1 - (2m/r)]dt^{2} - [1 - (2m/r)]^{-1}dr^{2} - r^{2}d\phi^{2}$