


Physics 311
General Relativity

Lecture 15:
Metrics and curved space



NO HOMEWORK this week



Today’s lecture plan
• Flat spacetime of Special Relativity.

• Solving Einstein Field Equation for empty space – the 
“vacuum solution”

• Schwarzschild metric



A look back

• In Special Relativity the spacetime is said to be “flat”, it has no 
“curvature”. What do we mean when we say “the spacetime is flat”, “the 
spacetime has no curvature”?

• We mean that the path of a free particle is a straight line, and that the 
square of the interval is a linear combination of the space and time 
components squared:

ds2 = dt2 – (dx2 + dy2 + dz2)

(in the system of units where c = 1)

• This is a lot like the Euclidean geometry, which is also flat. We’ve 
alluded to a non-Euclidean geometry in the last lecture; we’ll soon see 
how it comes to be.



The Minkowski metric
• We can write the expression for the interval in the matrix form:

1 0 0 0 dt

0            i 0 0 dx

0 0           i 0 dy

0 0 0           i dz

( so that ds2 = dt2 - dx2 - dy2 - dz2)

• This matrix – a very simple matrix indeed – defines the metric of Special 
Relativity, the Minkowski metric. It is simple yet powerful; it completely 
describes the spacetime of Special Relativity.

ds = ×



Einstein Field Equation: another dissection
• Generally speaking, Einstein field equation

Gμν = 8πTμν

is a set of 10 (16 components in each tensor, minus 6 due to symmetry, and 
if you’re smart enough, minus 4 more) coupled elliptic-hyperbolic nonlinear 
partial differential equations for the metric components.

• Just so that we are clear on definitions:

“coupled” – each differential equation contains multiple terms; 
equations cannot be solved individually.

“elliptic-hyperbolic” – determinants of sub-matrices of the system of 
equations matrix are either positive or negative; never zero.

“nonlinear” – dependent on nonlinear function of metric components

“partial differential equation” – an equation containing partial 
derivatives of functions, for example ∂2f(x,y,z)/∂x∂y

“metric components” – components of the metric tensor gμν



Einstein Field Equation expanded
• From “simple” form: Gμν = 8πTμν

...to rather more complex, expanded form...
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Here, Γα
γ
β = ½ gδγ[ ∂β(gαδ) + ∂α(gβδ) - ∂δ(gαβ)] are Christoffel symbols of 2nd kind

– tensor-like objects derived from Riemann metric g;

∂α = (∂/∂xα) denotes partial derivative with respect to variable xα;

and gαβ is the metric tensor – roughly speaking, the function that tells us how 
to compute distances between points in a given space:           

ds2 = Σgαβdxαdxβ

Rμν
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Back to Minkowski metric
• The matrix in the expression for the interval is nothing 
more, nor less, than the Minkowski metric tensor gαβ

1 0 0 0 dt

0         i 0 0 dx

0 0         i 0 dy

0 0 0         i dz

• So we actually know one metric tensor already – it’s not too 
scary at all!

ds = ×



... but that’s a very special case...



... a slightly more general case...



... looks a lot different...



If you sit down and write down 
the Ricci tensor for a general 
case of a 2-dimensional space 
with axial symmetry, you would 
get something like this:







... and just a little bit more.

This is a general expression for Ricci tensor Rmn in only two dimensions, 
with axial symmetry. (From Larry Smarr, Univ. of Illinois)

Just try to imagine all of three dimensions of space plus one of time!



Special case: vacuum
• I haven’t said anything about the energy-stress tensor Tμν yet. Well, here’s 
an example of this tensor:

Tμν = 0
• This special case is called “vacuum”, and corresponding solutions for the 
metric gμν are called “vacuum solutions”. In this case, we have R = 0.

• Wait – what solutions? If we set Tμν to zero, wouldn’t our metric be just 
zero as well?

• Not really! The field equation now has form:

Rμν = 0

But the left-hand side is a complicated mess of derivatives of the metric. 
There can be many solutions for this “vacuum” equation, including several 
exact analytic solution. These different solutions arise from different 
symmetries we impose on the metric.



Minkowski metric (one last time)
• Minkowski metric is one of the vacuum solutions for a space that has 
perfect symmetry – a space that is: 

- uniform, so that g(t,x,y,z) = g(t,x+Δx,y,z) (also true for y and z)

- isotropic, so that g(t,x,y,z) = g(t,-x,y,z) (also true for y and z)

and a time that is:

- uniform, so that g(t,x,y,z) = g(t+Δt,x,y,z)



Schwarzschild Vacuum Solution
• Another important metric, first to be explicitly solved only weeks after 
Einstein published his General Relativity paper is 1915, is called 
Schwarzschild metric, named after the man who solved it.

Karl Schwarzschild

• This solution assumes spherical symmetry of 
space, as around an isolated star.

• How is this “vacuum” if there is a star?! There’s 
mass, thus there is energy, and there must be 
stress somehow, so tensor Tμν must be nonzero!

• The keyword is “around” – the solution is for 
the metric of empty space (also known as 
“vacuum”) surrounding a spherically-symmetric 
massive object.



Derivation of Schwarzschild solution.       
1. Assumptions and notation

• We start by defining our assumptions and notation.

1. The coordinates are (t, r, θ, φ) – time + spherical coordinate 
system. We call these coordinates xμ, with μ = 1...4.

2. Spherical symmetry: metric components are unchanged under    
r → −r, θ → −θ and φ → −φ.

3. Spacetime is static, i.e. all metric components are independent of 
time: (∂gμν/∂t) = 0; this also means that spacetime is invariant under 
time reversal.

4. We are looking for vacuum solution Tμν = 0, with R = 0.

• What we need to solve then is:

Rμν = 0



Derivation of Schwarzschild solution.       
2. Diagonalizing

• The requirements that metric be time-independent, and symmetric with 
respect to rotations, allow us to diagonalize the matrix:

1. Time-reversal symmetry: (t, r, θ, φ) → (-t, r, θ, φ) must conserve 
components of g. The components of the 1st column of the metric, 
gμ1 (μ ≠ 1), transforms under time reversal as: gμ1 → - gμ1

Since we demand that gμ1 = gμ1, then gμ1 = 0 for (μ ≠ 1).

2. Same reasoning for r, θ and φ – symmetries leads to all other 
non-diagonal (i.e. μ ≠ ν) metric components to vanish.

• Thus, the sought metric has the form:

ds2 = g11dt2 + g22dr2 + g33dθ2 + g44dφ2



Derivation of Schwarzschild solution.       
3. Simplifying

• On a sphere of constant radius, and at constant time, the only spherically-
symmetric combination of dθ2 and dφ2 is C(r)(dθ2 + sin2θdφ2), where C(r) is (a 
yet unknown) function of radius coordinate only. This expression above is 
simply the element of a spherical surface.

• For constant t, θ and φ (i.e. on the radial line) metric should only depend on 
the radius coordinate r – again, to conserve the spherical symmetry. That 
means that the metric components for time and radius, g11 and g22, must be 
functions of r only.

• This simplifies the metric even further, to:

ds2 = A(r)dt2 + B(r)dr2 + C(r)(dθ2 + sin2θdφ2) 



Derivation of Schwarzschild solution.       
4. Solving for components

• First, we find the function C(r) by noticing that at a surface of constant 
radius r0 and at constant time, the separation can be written as:

ds2 = r0
2 (dθ2 + sin2θdφ2)

• Since this must hold true for all radial surfaces, i.e. for any r, the unknown 
function C(r) is simply r2, and the θ and φ – components of the metric are:

g33 = r2

g44 = r2sin2θ
dsr0

r0



Derivation of Schwarzschild solution.       
4.1. Solving for components

• Functions A(r) and B(r) can be found by solving the Einstein field equation 
(what a surprise!). Only 4 equations remain non-trivial:

4∂rAB – 2r∂r
2BAB + r∂rA∂rBB + r∂rB2A = 0

r∂rAB + 2A2B – 2AB – r∂rBA = 0

-2r∂r
2BAB + r∂rA∂rBB + r∂rB2A – 4∂rBA = 0

(-2r∂r
2BAB + r∂rA∂rBB + r∂rB2A – 4∂rBAB)sin2θ = 0

• Subtracting equations 1 and 3 leads to:

∂rAB + ∂rBA = 0  ⇒ A(r)B(r) = K (a non-zero, real constant)

• Substituting into equation 2 we get:

r∂rA – A(1 – A) = 0  ⇒ A(r) = K[1 + 1/(Sr)] = g11

B(r) = [1 + 1/(Sr)]-1 = g22



Derivation of Schwarzschild solution.       
5. Arriving at solution

• Finally, we find the coefficients K and S in the weak-field approximation –
i.e. far away from the gravitational source. At r → ∞ the spacetime must 
approach Minkowski spacetime, thus:

g11 = K[1 + 1/(Sr)] → K  ⇒ K = c2 = 1

• Gravity must converge to Newtonian in the weak field. This lets us find the 
numerical value of the constant S:

S = -c2/(2Gm) = -1/(2m)
where m is the mass of the central body, and G is the gravitational constant.

• The full Schwarzschild metric is:

ds2 = [1-(2m/r)]dt2 – (1-(2m/r))-1dr2 - r2dθ2 - r2sin2θdφ2



Schwarzschild spacetime
• Schwarzschild spacetime has curvature that decreases with distance 
from the center. At infinity, Schwarzschild spacetime is identical to the flat 
Minkowski spacetime.

• In the center of Schwarzschild metric, singularity is possible, leading to 
formation of a Schwarzschild (non-rotating) black hole.



Recap:
• Einstein field equations can be explicitly solved for certain 
types of stress-energy tensor. These solutions are called 
spacetime metrics.

• Special case of stress-energy tensor – the vacuum – leads 
to Minkowski and Schwarzschild spacetime (among many 
others).

• Schwarzschild metric is fairly simple. We will mostly see its 
3-dimentional (one time plus two space) case:

ds2 = [1 – (2m/r)]dt2 – [1 – (2m/r)]-1dr2 – r2dφ2
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