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l ~ h e  nature of the clear zone around microtubules 
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Summary. The clear zones seen around microtubules in transverse sections of 
nutritive tubes vary in size depending on whether a microtubule is bordered by 
ribosomes or by another microtubule. We consider that such a finding is not 
consistent with the current view, that the clear zone is maintained by 
microtubule-associated material. It can, however, be accounted for by an 
electrostatic repulsion between the s u r f ~ s  of negatively charged mic- 
_2_ -------- 

and between microtubules and ribosomes-h are also negatively charged. 
The experiments presented here, involving on the one hand the addition of 
cationic substances to microtubules and on the other the alteration in charge of 
the microtubules, support this hypothesis. 
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Almost since microtubules first began to be described in cells it was noticed that 
they are invariably surrounded by a clear zone which appears electron opaque, 
giving the impression of a "halo" around each microtubule when viewed in 
transverse section (Porter 1966). Naturally enough, early studies concentrated on 
the microtubules themselves and the clear zones around them were even dismissed 
as being artifacts of futation (Maser and Philpott 1964). However, subsequent 
investigations using alternative fixation and staining techniques as well as freeze- 
etching (see Stebbings and Willison 1973) have confinned that the region 
immediately surrounding a microtubule is seldom encroached upon by other 
organelles, and also that microtubules only rarely make contact with each other. 

' I It became the presumption that the clear zone contained components which 
could not be visualised by the conventional preparative procedures and attempts to / stain the clear zone using other techniques were quite numerous. It was found, for 
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example, that ruthenium red and lanthanum hydroxide, which bind to polyanionic 
substances such as mucopolysaccharides, stained that part of the clear zone 
immediately surrounding the microtubule (Tani and Ametani 1970; Lane and 
Treherne 1970). but none succeeded in staining the entire clear zone and the 
emphasis on this approach waned when it was realised that such polycationic 
substances bind to tubulin itself. 

More recently, attention has concentrated in a similar direction towards the 
possibility that the clear zone is occupied by a fine filamentous coating of protein 
which is of low average density compared to the microtubules, and the belief that 
this might be sufficient to prevent large particles approaching the microtubule walls 
(Amos 1979). In this connection it is pointed out that microtubule associated 
proteins (MAPS) appear as fine filamentous projections on microtubules assembled 
in vitro, and that the spacings of microtubules vary when tubulin is assembled with 
and without such MAPS (Kim et al. 1979). 

The problem arises as to whether what has been demonstrated in vitro occurs in 
the living cell where projections are not seen with such regularity. In addition. 
although tubulin assembled in the absence of MAPS does indeed form microtubules 
which are more closely spaced than those assembled with MAPS, microtubules 
formed solely from tubulin do not actually touch (Herzog and Weber 1977) and for 
these reasons alternative explanations for the clear zones must be sought. 

Clear zones are particularly conspicuous around microtubules which are 
bordered by other electron dense cytoplasmic components, as occurs, for example, 
in the nutritive tubes of insect ovaries. Here the microtubules are themselves quite 
closely packed in a parallel array and interspersed with ribosomes which are 
transported along their lengths (Macgregor and Stebbings 1970). Such a system 
lends itself well to experimental investigations of the clear zone since individual 
nutritive tubes containing their microtubule and ribosomal components can be 
teased from ovaries by micromanipulation (Hyams and Stebbings 1979a). The 
surrounding membrane can then be removed by detergent treatment, whereupon 
the ribosomes disperse leaving the microtubule bundle free in the isolation medium. 
In this way, microtubules which were known to be surrounded by clear zones can be 
dissected directly from the ovaries for experimentation. 

In this study we have refocussed on the fact that polycationic substances 
associate with the surfaces of microtubules which are anionic at physiological pH 
and that they bind by non-specific electrostatic interactions (Erickson and Voter 
1976). Our approach has been to determine the spatial arrangements of 
microtubules before and after their release from nutritive tubes, on addition of 
cationic substances, and after varying the negativity of the microtubules by 
adjustment of their pH. The significance of the spacings, and the experimental 
alteration in the spacings of the microtubules, to an understanding of the nature of 
the microtubule clear zones is discussed. 

Materials and methods 

ova% of Nqronecra glauca were dissected in insect Ringer and individual ovarioles teased apart. These 
were desheathed and washed in 0.1 M Pipes (piperazinc N.N'- bis 2-ethanesulfonic acid, 1 rnM EGTA 
(ethylene glycol tctracctic acid), 0.1 rnM MgSO, (PEM). pH 6.9. Nutritive tubes were isolated manuilly 
from the ovarioles using polarised light as already described (Hyams and Stebbings 1979a). Others were 
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tercbd out similarly, but in PEM containing 0.5 % Triton - X 165,0.25 % deoxycholate which had the 
effect of removing themanbrane which surrounded them, and these we called "extracted" as opposed to 
'isolated" nutritive tubes. For handling purposes both isolated and extracted nutritive tubes were left 
attnched to their trophic regions and these were washed o n a  more in PEM prior to treatment and 

L 
dcctron minoswpy. 

Electron microscopy 

Comparison of isolaredand exrmcred nutritive rubes. In all cases, isolated and extracted nutritive tubes 
were supported in 3 % agarose (Type VII, low gelling temperature, Sigma) in the appropriate buffer prior 
to faation in order to maintain than straight and so aid subsequent sectioning. 

Isolated andextracted tubes were fixed in 3 % glutaraldehyde in 0.1 M phosphate buffer pH 7.2 for 
2Omin, washed in buffer, and post-fixed in 1 % osmium in the same buffer for 1 h. 

Rurhmium red. Extractednutritive tubes were transferred to 3 % glutaraldehyde, 0.1 ",a ruthenium red in 
0.2 M sodium cawdylate buffer, pH 7.4 for 1 hand then to 1 % osmium, 0.1 "/, ruthenium red in 0.15 M 
cacodylate buffer for 3 h. 

Curionized ferritin. Cationizcd ferritin (Polyscienas, 25mglml) was dialysed overnight against PEM. 
Extracted nutritive tubes were transferred to cationizcd femtin for 2040  min and then washed in PEM 
to m o v e  excess ferritin. Controls were placed in normal femtin and treated sim~larly. Preparations 
mre then fued in 3 %glutaraldehyde in 0.1 M phosphate b a e r  for 20 min and then in 1 ". osmium in the 
same b a e r  for 1 h. 

E/jecr ofpH on spacings of microrubules. Extracted nutritive tubes were bathed in either 0.1 M Mes 2-m- 
morpholine ethanesulfonic acid), 1 mM EGTA, 0.1 m M  MgSO, (MEM), pH 5.6 or MEM pH 7.2 for 
periods between IS and 30min. They were then fixed at these different pHs in 3 "ib: glutaraldehyde in 
0.1 M cacodylate buffer for 2Omin followed by 1 % osmium in the same buffer. 

All the fixed specimens were dehydrated in an acetone series and embedded in TAAB resin, 
formulation "C". Sections werecut on a Reichert Ultracut, stained in uranyl acetate and lead citrate and 
hen examined using a JEOL 100s electron microscope. 

Results 

rransverse sections of in situ and isolated nutritive tubes show numerous 
nicrotubule profiles interspersed with ribosomes which are the only other 
amponents seen (Fig. 1). Where microtubules are surrounded by ribosomes these 
ipproach no closer than approximately 20 nm, giving the impression of an electron 
:lear zone around each microtubule. On the other hand, where microtubules are 
ieen adjacent to each other, they may be as close as approximately 10 nm. 

On addition of the detergent mixture the membranes surrounding the nutritive 
:ubes are removed and the ribosomes disperse leaving only the m~crotubules. In 
iuch extracted tubes the microtubules remain arranged in a parallel bundle and are 
;ometimcs scattered and other times clustered together (Fig. 2). In the latter case, 
dthough closely spaced, the microtubules do not make contact, but remain 
ieparated by distances of approximately 10 nm. 

On addition ofruthenium red to extracted nutritive tubes the microtubules pack 
.ogether closely into a crystal-like array (Fig. 3) with their walls separated only by 
be ruthenium red (Fig. 4). A similar result is seen with cationic ferritin (Fig. 5) 
~lthough the microtubules do not pack so closely, being separated by the larger 
'erritin molecules (Fig. 6). Ordinary ferritin does not bind to the microtubules. 

Where extracted nutritive tubes have been bathed and fixed in MEM at pH 5.6 



Fig. 1. Transverse section of a nutritive tube showing microtubule and ribosomal components. Clear 
zones of approximately 20nm width can be seen around those microtubules bordered by ribosomes, 
while distances of as little as lOnm separate adjacent microtubules. Bar = 0.25 prn 

Fig.2- Transverse section through an extracted nutritive tube. Here the microtubules approach to 
approximately 10 nm, but rarely touch. Bar = 0.25 pm 
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Fig.3,4. Transverse sections of extracted nutritive tubes treated with ruthenium red, in which the 
microtubules aggregated into closely packed crystal-like arrangements. Fig. 3 Bar = 0.25 pm. Fig. 4 
Bar = 0.1 pm 

Figs.5.6. Transverse sections of extracted nutritive tubes treated with cationic ferritin. As with 
ruthenium red the microtubules aggregate but are separated in this case by the much larger ferritin 
molecules. Fig. 5 Bar = 0.25 pm. Fig. 6 Bar = 0.1 pm 
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Erg.8. Transverse section of an extracted nutritive tube bathed and fixed at pH 7.2. In contrast with 
Fig. 7 the microtubules are not seen to touch. Bar = 0.25 pn 
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there aremany instances where microtubules actually touch and clusters of three or 
more microtubules in contact are not uncommon (Fig. 7'1. By contrast, at pH 7.2 the 
microtubules are never seen to touch (Fig. 8). 

CI 

Discussion 

The microtubules in nutritive tubes when viewed in transverse section are seen to 
possess distinct peripheral clear zones. In this respect they are comparable to those 
of numerous other cells and tissues where microtubules with clear zones varying in 
width between 5-20 nm have been reported (see Amos 1979). Such observations are 
not confined to fixed and sectioned material since similar clear spaces have been 
seen around microtubules in nutritive tubes after freeze-fracturing (Stebbings and 
Willison 1973). 

To date there has been no satisfactory explanation of the clear zone, and since it 
is not seen at all in negatively stained material and has been shown to have no 
structure independent of themicrotubules themselves (Stebbings and Bennett 1976) 
the nature of the clear zone has remained a dilemma. 

Most relevant, we feel, is that the periphery ofmicrotubules is strongly anionic, 
since tubulin is an acidic protein by virtue of its high glutamate and aspartate 
content. Certainly the fact that their surfaces are negatively charged would explain 
the "staining" of microtubules by lanthanum hydroxide and ruthenium red (Lane 
and Treherne 1970; Tani and Ametani 1970), both of which are cationic and have a 
high affinity for tubulin. It would explain the thickening of the walls of blood 
platelet microtubules to form "an outer component" on addition of Alcian blue 
8GX, protamine sulphate, polylysines and DEAE-dextran, all of which carry 
multiple positive charges at the pH of the stabilising media used (Behnke 1975). 
And it is in accord with the view that positively charged groups on MAPS bind to the 
microtubules by the same nonspecific electrostatic forces (Erickson and Voter 
1976). 

It seemed logical to ask to what extent might the surface charge on microtubules 
influence their positioning and arrangement in relation to each other and to other 
cellular components? In nutritive tubes, microtubules are mainly surrounded by 
ribosomes which are themselves strongly negative and bind cations and basic dyes. 
We believe that this could account for their spatial separation which manifests itself 
as a "clear zone" around each microtubule. Furthermore, in extracted nutritive 
tubes where the ribosomes are lost, and importantly the microtubules free to move, 
the latter often become very closely and even hexagonally packed without ever 
actually making contact - a configuration remarkably comparable to that of 
microtubules in redundant tubes (Hyams and Stebbings 1979b); and again this 
could be explained by their being held apart by an electrostatic repulsion between 
comparable charges of the same sign. 

Our experimental addition of cationic substances to microtubules from 
extracted nutritive tubes supports this view. Here the negatively charged 
microtubules bind the added cationic components with the result that they 
associate into closely packed aggregates. This occurs most spectacularly on 
addition of ruthenium red, which is a small molecule with a molecular weight of 860 
and an estimated molecular size of about 1 nm, after which the microtubules appear 
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to fuse into a regular crystal-like pattern. Likewise, microtubules are bound and 
aggregated by cationic ferritin but are not seen to pack so closely in this case since, 
by contrast, the ferritin is a much larger molecule of approximately 500 times the 
molecular weight of ruthenium red and with a diameter of approximately 12nm. 

The theoretical isoelectric points of a and fl tubulins calculated from the 
reported amino acid content of sea urchin tubulin (Luduena and Woodward 1973) 
are 5.7 and 5.6 while the values reported for calf brain tubulin are 5.4 and 5.3 
respectively (Berkowitzet al. 1977). We hypothesised that if the negative charges on 
the microtubules are responsible for their separation, then a reduction in their 
negativity to zero, or almost zero, by lowering their pH to a value at, or close to, 
their isoelectric pH, should abolish the repulsion between adjacent microtubules, 
thus allowing contact. This is indeed the case. Extracted nutritive tubes bathed and 
fixed a t  pH 5.6 show a proportion of microtubules in close contact, forming in some 
instances clusters or  rows, which are never seen at pH 7.2. 

A particular feature which has not been adequately emphasised previously is the 
difference in dimensions recorded for clear zones in different tissues and even in the 
same tissue. In nutritive tubes, for example, in regions where rnicrotubule profiles 
are completely surrounded by ribosomes they show a clear zone of approximately 
20 nm in width. However, microtubules are also quite frequentIy seen adjacent to 
each other, and if the clear zone could be accounted for by material associated with 
the microtubules themselves one would expect them to approach no closer than 
2 x 20 nm; but this is not the case, as microtubules separated by as little as 10 nm can 
regularly be seen. Such observations illustrate that the width of the clear zone is not 
constant, but that its size depends on what cellular component happens to border 
any particular microtubule. Such an observation could not easily be explained by 
the presence of microtubule-associated material, but is consistent with the findings 
reparted here where the size of the clear zone might depend simply on the sizes of the 
opposing charges. 
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