BIOEN 302

2007 Final Exam Problem 3: Fourier Transforms

Thought process:

- The problem says that |*P*(*f*)| is the absolute value of a sinc function
- We know that a sinc function is the Fourier transform (or inverse FT) of a square pulse

Quantitative solution

- Where do we get $1/\tau$ as the first minimum?
- $\sin(\pi f \tau)/(\pi f \tau) = 0$ when $\pi f \tau = \pi$

What is the phase ϕ ?

- Let z be a complex number, z = a + jb
- z = Mcos(2pft φ) where M = sqrt(a² + b²), φ = atan(b/a)
- $z = M e^{j\phi}$ (complex exponential form)
- Here, $P(f) = |P(f)| e^{j\phi} = |P(f)| e^{j\pi f}$
- But we know that $\mathcal{F}{p(t-a)} = \mathcal{F}{p(t)} e^{j2\pi fa}$
- Here, $\phi = \pi f = 2\pi f a$, so a = 1/2
- Therefore, the pulse is shifted right by 1/2

The next solution:

- We know the IFT of the first one already
- The second spectrum is the FT of $2\cos(2 \pi f_0 t)$ where $f_0 = 1.5$
- Convolution in frequency means multiplication in time...
- So we get a gated cosine

