BIOEN 302
 2007 Final Exam
 Problem 3: Fourier Transforms

The question:

- What is the time-domain function that corresponds to the following magnitude and phase plots?

Thought process:

- The problem says that $|P(f)|$ is the absolute value of a sinc function
- We know that a sinc function is the Fourier transform (or inverse FT) of a square pulse

General form of pulse and sinc function

Quantitative solution

- Where do we get $1 / \tau$ as the first minimum?
- $\sin (\pi f \tau) /(\pi f \tau)=0$ when $\pi f \tau=\pi$

Finding Vm and τ

- $1 / \tau=.25$ so $\tau=4$
- $V_{\mathrm{m}} \tau=6$ so $V_{\mathrm{m}}=1.5$

- We would be done here if the Fourier transform had been all real... but it is not.

Symmetric pulse -> real FT

- The phase would be either 0 or π

What is the phase ϕ ?

- slope of $\phi=45 \% .25=\pi \mathrm{rad} / \mathrm{Hz}$
- $\phi(f)=\pi f$ radians

What is the phase ϕ ?

- Let z be a complex number, $\mathrm{z}=\mathrm{a}+\mathrm{jb}$
- $\mathrm{z}=\mathrm{Mcos}(2 \mathrm{pft}-\phi)$ where $M=\operatorname{sqrt}\left(a^{2}+b^{2}\right), \phi=\operatorname{atan}(b / a)$
- $\mathrm{z}=\mathrm{M} e^{j \phi}$ (complex exponential form)
- Here, $P(f)=|P(f)| e^{j \phi}=|P(f)| e^{j \pi f}$
- But we know that $\mathscr{F}\{p(t-a)\}=\mathscr{F}\{p(t)\} e^{j 2 \pi f a}$
- Here, $\phi=\pi f=2 \pi f a$, so a $=1 / 2$
- Therefore, the pulse is shifted right by $1 / 2$

Final solution, part a

The next question:

- What is the time-domain function with the FT that is all real, as shown here?

The next solution:

- $P(f)$ is the convolution of 2 functions

The next solution:

- We know the IFT of the first one already
- The second spectrum is the FT of $2 \cos \left(2 \pi f_{0} t\right)$ where $f_{0}=1.5$
- Convolution in frequency means multiplication in time...
- So we get a gated cosine

