Homework 4 Due Nov. 15

A common way to manage type I diabetes is through the use of insulin pumps. Currently, insulin pumps work by injecting a small basal level of insulin into the patient's blood. When eating a meal, the patient presses a button to obtain a large bolus of insulin to counteract the effects of the meal on their blood sugar.

An alternative strategy to maintain glucose levels in diabetic patients to use a closed-loop feedback system. To derive the closed-loop controller, we should first understand the open-loop system. The insulin system may be modeled in the following way.

Let G be the patient's blood glucose level, I be the patient's blood insulin level, and X be the amount of insulin dissolved in the patient's tissues. The input variable u would then be the insulin injection rate, into a blood volume of V_1 . The corresponding equations follow:

$$\dot{G} = -P_1G - P_4X(G + G_b)$$

$$\dot{X} = -P_2X + P_3I$$

$$\dot{I} = -n(I + I_b) + u / V_I$$

Constants in the model have these numerical values:

 $P_1 = .0287$ per minute

 $P_2 = .0283$ per minute

 $P_3 = 5.04 \times 10^{-5}$ per minute

 P_4 = 1 L per mU-min. (the model I'm working from omitted this coefficient, but we need something here to get consistent units)

 $G_{\rm b}$ = 4.5 mMol per Liter

n = 5/54 per minute

 $V_1 = 12 \text{ L}$

For this system:

Given that we are applying 15 milliUnits per Liter of insulin to the diabetic patient to maintain a basal level of insulin in the blood (i.e., $I_b = 15$)...

- 1. Find the equilibrium point of the nonlinear model;
- 2. Linearize around the equilibrium point;
- 3. Rewrite the linearized system in state space form;
- 4. Find the transfer function of the linearized system.

I recommend doing the work on paper in terms of the variables, then doing the computation using MATLAB or a symbolic solver. Do add relevant comments to your code.

Suggested exercises (not required for homework assignment):

- a. Plot the step response of the linearized system;
- b. Find the eigenvalues of the state matrix and comment on the system's stability;
- c. Use MATLAB's ODE solver, such as ode45 (), to solve the system of equations.