BIOEN 302

Lecture 8
 Poles, stability, and the s-plane

October 12, 2007

Before we begin...

- New dates
- Homework 3 due Wed. October 17
- Quiz 2 on Fri. October 19
- Save your concerns and your latest brilliant thoughts for after class
- Plan your work time for the week.

Homework 2 solution

- Critically damped system:
$\mathrm{v}(\mathrm{t})=\mathrm{A} \mathrm{e}^{-\mathrm{st}}+\mathrm{Bte}^{-\mathrm{st}}$
- Initial conditions:
$x(0)=30 \mathrm{~cm}, x^{\prime}(0)=0$
give $A=30 \mathrm{~cm}, B=-A s$
- $X(1) / x(0)=1 / 30=e^{s}(1-s)$ solve iteratively to get $\mathrm{s}=-5.2$
- Char. Eqn.: $\mathrm{ms}^{2}+\mathrm{bs}+\mathrm{k}=0$
$-5.2=-b / 2 m \rightarrow b=20.8$

Corrected solution for Homework 2

- Complete solution:
$x(t)=30 e^{-5.2 t}+156 t e^{-5.2 t}$

the Frequency Domain

- The s plane

$$
s=\sigma+j \omega, \text { as in } \mathrm{x}(\mathrm{t})=e^{\mathrm{st}}=e^{(\sigma+\mathrm{j} \omega) \mathrm{t}}
$$

Transfer functions in the s-plane

Transfer functions in the s-plane

$$
H(s)=2 /\left(s^{2}+5 s+6\right) \quad \text { Poles at } s=-2,-3
$$

Transfer functions in the s-plane

Transfer functions in the s-plane

$$
H(s)=2 /\left(s^{2}+3 s+4\right)
$$

Imaginary part of transfer function

$$
H(s)=2 /\left(s^{2}+3 s+4\right)
$$

Phase of transfer function

