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Fourier Transforms
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Fourier Series: main points
• Infinite sum of sines, cosines, or both
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• All frequencies are integer multiples of a 
fundamental frequency, ωo

• F.S. can represent any periodic function 
that we can physically produce
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Underlying principle: superposition
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Fourier coefficients: trig form

+Tt01

)sin()cos()( 0
1

00 tnbtnaatf nn ω+ω+= ∑
∞

∫

∫
+

+

ω=

=

Tt

k

Tt

dttktf
T

a

dttf
T

a

0

0

0

0
0

)cos()(2

)(1

∫
+

ω=
Tt

k dttktf
T

b

T
0

0
0

0

)sin()(2



3

Source of the Fourier coefficients
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Symmetry of functions
• Even symmetry: f(t) = f(–t)
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• Odd symmetry: f(t) = –f(–t)
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Fourier coefficients: Complex exp. form
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• Example: for periodic pulse train 

∫
+

−=
Tt

t

tjn
n etf

T
C

0

0

0)(1 ω

)2/sin(nV ∞ τωτ

)()sin(
2/

)2/sin(

0

0

x
x
x

n
n

T
VC m

n

sinc=

= ∑
∞− τω

τωτ

Magnitude and phase plots
• Magnitude plot shows |Cn(ω)|
• Phase shows tan–1(Im{Cn}/Re{Cn})
• Plot exists at nω onlyPlot exists at nω0 only
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Magnitude and phase plot - example

Fourier Series: scaling property
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• Complex coefficients: 
Magnitude and ω0 vary inversely with T
Coefficients become smaller and more closely 
spaced as period increases 
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Fourier Series: scaling property
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Fourier Series: scaling property
Full-wave rectified sine,
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Fourier Series: scaling property
Full-wave rectified sine,
T2 = 2T1
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Fourier Series: scaling property
Full-wave rectified sine,
T2 = 4T1
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and so on....
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Fourier Series: scaling
• Things to note:

As T → ∞, ω0 → 0, i.e. the series becomes 
continuous
As T → ∞, |Cn| → 0 but the sum of the 
coefficients over an interval ω1 to ω2 remains 
finite
Therefore, we can calculate CnT, which is a 
finite, continuous function of ω,
The resulting function is...

The Fourier TransformFourier Transform
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The Fourier Transform
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• Things to note:
The FT is a weighting function for sinusoidal 
(or complex exponential) content in signal
The FT transforms a continuous, aperiodic 
function in time into an aperiodic continuousfunction in time...into an aperiodic, continuous 
function in frequency
Because both the FT and IFT contain complex 
exponentials, there are many cases of duality 
among FT pairs

A few Fourier pairs

f(t) 1 (or an constant)
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• f(t) = 1 (or any constant)
This function has zero frequency (or infinite 
period)
The area under the FT curve must be finite for 
the amplitude of the time-domain signal to be 
non-zero
Therefore, FT{1} = δ(ω)

t ω
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A few Fourier pairs
• f(t) = cos(ω0t)

This function has a specific frequency
Negative and positive frequencies are bothNegative and positive frequencies are both 
present to cancel the imaginary part
Therefore, 
F{cos(ω0t)} = (2π/2)[δ(ω+ω0)+ δ(ω−ω0)]
Note that F{cos(ω0t)} is real and even

ω

Re{F(ω)}

Im{F(ω)}

A few Fourier pairs
• f(t) = sin(ω0t)

This function has a specific frequency
A 90° phase shift in a complex exponentialA 90 phase shift in a complex exponential 
means multiplication by j
Therefore, 
F{sin(ω0t)} = j π [δ(ω+ω0) – δ(ω−ω0)]
Note that F{sin(ω0t)} is imaginary and odd

ω

Re{F(ω)}

Im{F(ω)}
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f(t) = square pulse of height A and width 2b, 
centered at t = 0

• F(ω) = 2Ab sin(ωb)/ωb = 2Ab sinc(ωb)
The amplitude F(0) is the area under the pulse 
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F(ω) is real and even if the pulse is centered 
on t=0.
F(ω) is complex if the pulse is not centered.
The IFT of a pulse in frequency is a sinc 
function in time.
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Transfer functions in the s-plane
H(s) = 2 / (s2 + 3s + 4)
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Magnitude plot

• G(ω) = 4/( (jw)^2 + 3(jw) + 4)
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For image analysis: 
Two-dimensional Fourier transformation
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• Integral form
Operates on continuous image
Does not assume image is periodic
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Does not assume image is periodic
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For image processing: 
Two-dimensional Fourier transformation
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• Summation form 
• Usually called “Discrete Fourier Transform”
• Operates on sampled image (not continuous)Operates on sampled image (not continuous)
• Assumes the image is periodic in x and y

Operational transforms

Translation in the time domain
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• Translation in the time domain
Equivalent to multiplication in the frequency 
domain

• Translation in the frequency domain
Equivalent to multiplication by complex q p y p
exponential in the time domain 
Not a smart thing to do

• F(ω) is real and even if the pulse is 
centered on t=0.
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Operational transforms

Scale change
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• Scale change
When one domain is stretched out, the other 
domain is compressed
Example: T increases, ω0 decreases
Wider in time means narrower and taller in 
frequency

Operational transforms

Mod lation (e g AM radio)
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• Modulation (e.g. AM radio)
Amplitude of high-frequency carrier is modified 
by amplitude of low-frequency signal
F{f(t)cos(ω0t)} = ½ F(ω+ω0) + ½ F(ω−ω0)
The original signal would have |F(ω)| centered 
around ω=0; the modulated signal would have 
|F(ω)| duplicated and shifted along the ω axis.
Interesting... What was F{cos(ω0t)} ?
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Operational transforms

Con ol tionCon ol tion
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•• ConvolutionConvolution
The output y(t) from a system with unit impulse 
response h(t), when the input is x(t), can be 
represented in two ways:
• by convolution in the time domain
• by multiplication in the frequency domain

Y(ω) = X(ω)H(ω)
Similar to VOUT(s) = VIN(s)H(s) in Laplace domain

Laplace vs. Fourier

Laplace transforms are betterLaplace transforms are better
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•• Laplace transforms are betterLaplace transforms are better
For systems analysis (convergence for wider 
variety of functions)
For control systems analysis 

•• Fourier transforms are betterFourier transforms are better
Easier to understand jω axis than s plane
Basis for FFT for discrete data
Widely used in signal processing


