BIOEN 302
 Lecture 16
 Fourier Transforms

November 29, 2010

Fourier Series: main points

- Infinite sum of sines, cosines, or both

$$
a_{0}+\sum_{1}^{\infty} a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n \omega_{0} t\right)
$$

- All frequencies are integer multiples of a fundamental frequency, ω_{0}
- F.S. can represent any periodic function that we can physically produce

Underlying principle: superposition

Fourier coefficients: trig form

$$
\begin{gathered}
f(t)=a_{0}+\sum_{1}^{\infty} a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n \omega_{0} t\right) \\
a_{0}=\frac{1}{T} \int_{0}^{t 0+T} f(t) d t \\
a_{k}=\frac{2}{T} \int_{0}^{t 0+T} f(t) \cos \left(k \omega_{0} t\right) d t \\
b_{k}=\frac{2}{T} \int_{0}^{t 0+T} f(t) \sin \left(k \omega_{0} t\right) d t
\end{gathered}
$$

Source of the Fourier coefficients

$$
\begin{gathered}
\int_{0}^{t 0+T} \cos \left(m \omega_{0} t\right) \sin \left(n \omega_{0} t\right) d t=0, \text { all } m \text { and } n \\
\int_{0}^{t 0+T} \cos \left(m \omega_{0} t\right) \cos \left(n \omega_{0} t\right) d t=0, m \neq n \\
\int_{0}^{t 0+T} \sin \left(m \omega_{0} t\right) \sin \left(n \omega_{0} t\right) d t=0, m \neq n \\
\Longrightarrow \int_{0}^{t 0+T} \cos ^{2}\left(m \omega_{0} t\right) d t=\int_{0}^{t 0+T} \sin ^{2}\left(m \omega_{0} t\right) d t=\frac{T}{2}
\end{gathered}
$$

Symmetry of functions

- Even symmetry: $f(t)=f(-t)$

Even, Aperiodic
Even, Periodic

- Odd symmetry: $f(t)=-f(-t)$

Fourier coefficients: Complex exp. form

$$
f(t)=\sum_{-\infty}^{\infty} C_{n} e^{j n \omega_{0} t}
$$

-

where

$$
C_{n}=\frac{1}{T} \int_{t 0}^{t 0+T} f(t) e^{-j n \omega_{0} t}
$$

- Example: for periodic pulse train

$$
\begin{aligned}
& C_{n}=\frac{V_{m} \tau}{T} \sum_{-\infty}^{\infty} \frac{\sin \left(n \omega_{0} \tau / 2\right)}{n \omega_{0} \tau / 2} \\
& \frac{\sin (x)}{x}=\operatorname{sinc}(x)
\end{aligned}
$$

Magnitude and phase plots

- Magnitude plot shows $\left|C_{n}(\omega)\right|$
- Phase shows $\tan ^{-1}\left(\operatorname{Im}\left\{\mathrm{C}_{n}\right\} / \operatorname{Re}\left\{\mathrm{C}_{n}\right\}\right)$
- Plot exists at $n \omega_{0}$ only

Magnitude and phase plot - example

Gigure 16.18 The phase angle of C_{n}.

Fourier Series: scaling property

$$
f(t)=\sum_{-\infty}^{\infty} C_{n} e^{j n \omega_{0} t}, \quad C_{n}=\frac{1}{T} \int_{t 0}^{t 0+T} f(t) e^{-j n \omega_{0} t}
$$

- Complex coefficients:
- Magnitude and ω_{0} vary inversely with T
- Coefficients become smaller and more closely spaced as period increases

Fourier Series: scaling property

Fourier Series: scaling property

Fourier Series: scaling property

Fourier Series: scaling property

and so on....

Fourier Series: scaling

- Things to note:

- As T $\rightarrow \infty, \omega_{0} \rightarrow 0$, i.e. the series becomes continuous
- As $\mathrm{T} \rightarrow \infty,\left|\mathrm{C}_{\mathrm{n}}\right| \rightarrow 0$ but the sum of the coefficients over an interval ω_{1} to ω_{2} remains finite
- Therefore, we can calculate $\mathrm{C}_{\mathrm{n}} \mathrm{T}$, which is a finite, continuous function of ω
- The resulting function is...

The Fourier Transform

Radian form

$$
\begin{aligned}
& G(\omega)=\int_{-\infty}^{\infty} g(t) e^{-j \omega t} d t \\
& g(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\omega) e^{j \omega t} d \omega
\end{aligned}
$$

Hertz form

$$
\begin{aligned}
& G(f)=\int_{-\infty}^{\infty} g(t) e^{-j 2 \pi f t} d t \\
& g(t)=\int_{-\infty}^{\infty} G(f) e^{j 2 \pi f t} d f
\end{aligned}
$$

The Fourier Transform

$F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \quad f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega$

- Things to note:
- The FT is a weighting function for sinusoidal (or complex exponential) content in signal
- The FT transforms a continuous, aperiodic function in time...into an aperiodic, continuous function in frequency
- Because both the FT and IFT contain complex exponentials, there are many cases of duality among FT pairs

A few Fourier pairs

$$
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \quad f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega
$$

- $f(t)=1$ (or any constant)
- This function has zero frequency (or infinite period)
- The area under the FT curve must be finite for the amplitude of the time-domain signal to be non-zero
- Therefore, $\mathrm{FT}\{1\}=\delta(\omega)$

A few Fourier pairs

- $f(t)=\cos \left(\omega_{0} t\right)$
- This function has a specific frequency
- Negative and positive frequencies are both present to cancel the imaginary part
- Therefore, $\mathcal{F}\left\{\cos \left(\omega_{0} \mathrm{t}\right)\right\}=(2 \pi / 2)\left[\delta\left(\omega+\omega_{0}\right)+\delta\left(\omega-\omega_{0}\right)\right]$
- Note that $\mathscr{F}\left\{\cos \left(\omega_{0} \mathrm{t}\right)\right\}$ is real and even

A few Fourier pairs

- $f(t)=\sin \left(\omega_{0} t\right)$
- This function has a specific frequency
- A 90° phase shift in a complex exponential means multiplication by j
- Therefore, $\mathcal{F}\left\{\sin \left(\omega_{0} \mathrm{t}\right)\right\}=j \pi\left[\delta\left(\omega+\omega_{0}\right)-\delta\left(\omega-\omega_{0}\right)\right]$
- Note that $\mathscr{F}\left\{\sin \left(\omega_{0} \mathrm{t}\right)\right\}$ is imaginary and odd

$f(t)=$ square pulse of height A and width $2 b$, centered at $t=0$
- $F(\omega)=2 A b \sin (\omega \mathrm{~b}) / \omega \mathrm{b}=2 A b \operatorname{sinc}(\omega \mathrm{~b})$
- The amplitude $F(0)$ is the area under the pulse
- $F(\omega)$ is real and even if the pulse is centered on $t=0$.
- $F(\omega)$ is complex if the pulse is not centered.
- The IFT of a pulse in frequency is a sinc function in time.

Transfer functions in the s-plane

Magnitude plot

- $G(\omega)=4 /\left((j w)^{\wedge} 2+3(j w)+4\right)$

For image analysis:
Two-dimensional Fourier transformation

$$
F(u, v)=\int_{-\infty}^{\infty} \int_{-\infty}^{+\infty} f(x, y) e^{j 2 \pi(x u+y v)} d x d y
$$

- Integral form
- Operates on continuous image
- Does not assume image is periodic

For image processing:
Two-dimensional Fourier transformation

$$
F(m, n)=\sum_{x=1}^{M} \sum_{y=1}^{N} f(x, y) e^{j 2 \pi(x m+y n)}
$$

- Summation form
- Usually called "Discrete Fourier Transform"
- Operates on sampled image (not continuous)
- Assumes the image is periodic in x and y

Operational transforms

$$
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \quad f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega
$$

- Translation in the time domain
- Equivalent to multiplication in the frequency domain
- Translation in the frequency domain
- Equivalent to multiplication by complex exponential in the time domain
- Not a smart thing to do
- $F(\omega)$ is real and even if the pulse is centered on $t=0$.

Operational transforms

$$
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \quad f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega
$$

- Scale change
- When one domain is stretched out, the other domain is compressed
- Example: T increases, ω_{0} decreases
- Wider in time means narrower and taller in frequency

Operational transforms

$$
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \quad f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega
$$

- Modulation (e.g. AM radio)
- Amplitude of high-frequency carrier is modified by amplitude of low-frequency signal
- $\mathscr{F}\left\{f(t) \cos \left(\omega_{0} \mathrm{t}\right)\right\}=1 / 2 \mathrm{~F}\left(\omega+\omega_{0}\right)+1 / 2 \mathrm{~F}\left(\omega-\omega_{0}\right)$
- The original signal would have $|F(\omega)|$ centered around $\omega=0$; the modulated signal would have $|F(\omega)|$ duplicated and shifted along the ω axis.
- Interesting... What was $\mathscr{F}\left\{\cos \left(\omega_{0} \mathrm{t}\right)\right\}$?

Operational transforms

$$
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \quad f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega
$$

- Convolution
- The output $y(t)$ from a system with unit impulse response $h(t)$, when the input is $x(t)$, can be represented in two ways:
- by convolution in the time domain
- by multiplication in the frequency domain $Y(\omega)=X(\omega) H(\omega)$
Similar to $\mathrm{V}_{\text {OUT }}(\mathrm{s})=\mathrm{V}_{\text {IN }}(\mathrm{s}) H(\mathrm{~s})$ in Laplace domain

Laplace vs. Fourier
$F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \quad f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega$

- Laplace transforms are better
- For systems analysis (convergence for wider variety of functions)
- For control systems analysis
- Fourier transforms are better
- Easier to understand j ω axis than s plane
- Basis for FFT for discrete data
- Widely used in signal processing

